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Introduction 

“The first law of geography: Everything is related to everything else, but near things are 

more related than distant things” (Tobler, 1970). 

 

The use of statistics in the analysis of infectious diseases has been in use for over 150 

years. The fundamental basis of this analysis is somewhat unchanged but the tools by 

which one analyses this data has changed substantially, especially with the advent of the 

personal computer and subsequently geographical positioning systems (GPS). This has led 

to an increased efficiency for researchers of analysis with regard spatial clustering. 

Spatial clustering can be defined as the collection or aggregation of objects due to the 

value of certain attributes (Han et al., 2001). In terms of infectious diseases, spatial 

clustering is interpreted as the uncommonly high density or concentration of disease 

outbreaks in an area which would have improbably occurred randomly (Knox, 1989). The 

clustering of emerging infectious diseases is often described as patterns of occurrence that 

can cause “significant burdens on global economics and public health” (Jones et al., 2008). 

The application of cluster analysis is often used as a means of recognizing and surveying 

possible disease outbreaks.  

 

The importance of spatial clustering is described as the “investigation of possible 

clustering of disease occurrence is a foundation of epidemiology, providing valuable 

information on possible causes of the disease of interest and methods that may be used for 

disease control and prevention” (Ward & Carpenter, 2000). Every epidemiological 

inquiry’s primary goal is to prevent further outbreaks or spread of a disease by 

implementing control measures (Goodman et al, 1990) and spatial analysis serves as 

necessary part of this inquiry. 

Spatial Clustering statistics are commonly used in the second stage of investigating 

possible outbreaks by the CDC – “(1) initial contact and response; (2) assessment; (3) 

major feasibility study; (4) aetiological investigation” (US Department of Human Health 

and Services, 1990) (Ward & Carpenter, 2000). 

The advent of Geographical Information Systems (GIS) a computer based data collection 

software that displays, manages and analyses data that is geographically referenced has led 

to a major progression in spatial analysis (Smith et al., 2015). GIS has taken a number of 



forms with subsidiaries of the system developed like Quantum Geographical Systems 

QGIS, ArcGIS, ArcMap, ArcView and Google Earth. Due to the fact, that software like 

Quantum Geographical Information Systems (QGIS) is free and open sourced, its 

applications are far-reaching. As a result, plug-in suites like VetEpiGIS have been 

developed. The remit of this paper includes the application of this plug-in VetEpiGIS 

within QGIS model in the provided case study.  

 

In the field of veterinary epidemiology, GIS uses include (Mengistu & Hailes, 2017): 

• Animal disease surveillance and monitoring. 

• Information recording and reporting 

• Emergency outbreak control strategies 

• Modelling the distribution and spread of diseases 

 

In our era of globalization and the resultant movement of peoples, animals and produce, 

the ever-increasing risk of pathogen distribution has highlighted a need for the evolution of 

new methods of disease analysis and control (Pfeiffer & Stevens, 2015). Spatial 

epidemiology defined as “the description and analysis of geographic variations in disease 

with respect to demographic, environmental, behavioural, socioeconomic, genetic and 

infectious risk factor” a subfield of spatial analysis, has become the cornerstone in disease 

control (Elliot & Wartenberg, 2004). Spatial epidemiology itself can be subdivided into: 

• Disease mapping. 

• Studies on geographic correlation. 

• The use of clustering in surveillance. 

 

Initial studies in disease control used disease mapping as simple way of representing 

standardized mortality/morbidity ratios of a disease. Historically this was used in public 

health studies in the early 20th century in tracking outbreaks of cholera, cancer rates (in 

England) and Typhoid (Snow, 1855). This has progressed to bulk studies using larger and 

larger data sets with the dawn of the computer age.  
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Literature Review 

 

As an ever-evolving niche of statistical analysis, whether in software or hardware that 

crosses varying disciplines, spatial clustering techniques needs regular reviews in order to 

gauge their effectiveness. The question is always which method is correct or “more 

correct”? However due to the ranging disciplines using spatial clustering methodology one 

cannot assume one method fits all or is better than all others. Taking into consideration the 

recently introduced techniques and methods in the field, provides one with the best 

direction to undertake this research. The objective of this literature review is to provide an 

overview of the history of the use of geographical spatial analysis in the field of veterinary 

epidemiology and its application in the prevention and control of outbreaks. 

 

The sequence of this review was set out as follows: 

1. The historical use of spatial analysis with regard infectious diseases.  

2. The application of GIS as an aid in infectious diseases analysis and VetEpiGIS. 

3. Future application of GIS in Veterinary Epidemiology 

4. A review of relevant literature pertaining to African Swine Fever case study 
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1. The historical use of spatial analysis with regard infectious diseases 

 

Maps have historically been the basis of epidemiological inquiries. They are at their core, 

easy to understand and eye catching, thus forming the foundation of spatial analysis. In an 

outbreak of cholera in London in 1854, John Snow demonstrated that the cholera was a 

water-borne pathogen by mapping out the outbreaks in an area of London and then overlay 

them with streets and nearest water pumps. In doing so, he was able to predict which pump 

was the source of the pathogen (Snow, 1855).  

 

It was stated (Ward & Carpenter, 2000) that map-construction forms the basis of the 

“visualization of disease pattern”. It is useful in: 

• Comprehending the epidemiological nature of a disease 

• Describing the pathogen quantitatively  

• Comparing and interpreting the various maps and plots. 

 

Though this is often difficult and sometimes an invalid method, it shapes the core of most 

epidemiological investigations. It also provides the researcher with a visual representation 

of obvious clustering of disease events, which can be conveyed easily to others. Diseases 

often form clusters and these are the foundation of many analyses. They are often valuable 

in the examination and control of public and animal health events (Kulldorff & 

Nagarwalla, 1995). 

The techniques most often used in examining spatial distribution of diseases include: 

• Spatial Scan Statistic (Bernoulli or Poisson Distribution)  

• Global Moran’s I 

• Geary’s C 

• Local Moran’s I (LISA) 

• Nearest Neighbour 

• Cuzick and Edwards Test 

 

The distribution of a dataset can be described as random, uniform, or clustered. These can 

be calculated with some of the following spatial clustering tests. Average Nearest 

Neighbour Test is described as the geographical distance between two centroids i.e. the 

centre of mass of a geometric object of uniform (Mitchell, 2005). In the case of veterinary 
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epidemiology, it could take the form of an outbreak location between two neighbouring 

farms or affected regions. All the affected farms nearest neighbour distances are calculated 

and an average is computed and given as index. This index is calculated as ratio of 

observed distance divided by the expected distance.  If the average of these lengths is 

below the hypothetical random distances (i.e. <1), the analysed farms are deemed clustered 

(Ward & Carpenter, 2000). If the mean lengths are above the random (i.e.>1), the farms 

are deemed dispersed (or non-clustered) (Ebdon, 1985). One rule associated with this type 

of analysis is that the dataset being assessed must be able to situate anywhere within the 

area of analysis and are independent of each other. The study area must be free of 

obstacles or barriers that may hinder the movement or spread of a subject (in this case an 

animal or pathogen) (Mitchell, 2005).  

 

Another test of significance is the Cuzick and Edward Test. Its outcome quantifies the 

possibility that clustering is occurring in a subpopulation in an already clustered 

population (Cuzick & Edwards, 1990). It also analyses the clustering of subpopulations. Its 

applications in veterinary epidemiology have included the analysis of papillomatous digital 

dermatitis clustering (Rodriguez-Lainz et al., 1996) and Pasteurella multocida and 

P.haemolytica resistant strains in US farms (Singer et al., 1998). 

 

Methods used (not exclusively used in this paper) for the examination of clustering events 

interacting with time-space in veterinary epidemiology include (Ward & Carpenter, 1999): 

• Mantel Test 

• Barton’s Method 

• Nearest Neighbour 

• Knox Test (and Modified Knox Test) (most used) 

 

Though these are temporal tools are important and useful methods of analysis, often 

problems arise due to the lack of statistical power. This is as a result of relatively small 

datasets.  

 

The aim of this review is to describe in detail the four algorithms which form the core of 

the VetEpiGIS-stat plug-in. These include Global Moran’s I, Geary’s C, Local Moran’s I 

and the Kulldorff Spatial Scan Statistic.  
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A. Geary’s C  

In the examination of distribution, a spatial hypothesis, known as spatial autocorrelation, 

can be identified in order determine whether a dataset is randomly distributed or clustering 

is present. In this form, it tests the hypothesis using a single variable at multiple locations 

(Hungerford, 1991). A method of spatial autocorrelation of a whole map as a “single 

qualitative value” has been labelled as Global Spatial Analysis or Global Clustering 

Analysis (Robertson & Nelson, 2014). The two most common forms of testing to this scale 

are Geary’s C and Global Moran’s I (Robertson & Nelson, 2014).  

 

Autocorrelation was defined (by Durr & Gatrell, 2004) as “…a tendency for nearby spatial 

units to record similar values”. This tendency towards similarity has led to the 

development of a number of statistical techniques in order to quantify it. This includes the 

Moran’s I coefficient. With regard to spatial autocorrelation, pairs of random variables 

attained values at locations a prescribed distance apart. These values were either positively 

or negatively correlated giving a more or less similarity to the randomly associated pairs 

(Legendre, 1993). In terms of infectious diseases, “positive spatial autocorrelation” may 

infer the infectiousness while the negative correlation may suggest dispersal or inadequate 

surveillance mechanisms in a particular country (Robertson & Nelson, 2014).  

 

Geary’s C or Geary’s Ratio is a statistical instrument developed by R. C. Geary, (his 

published material in 1954 describes it as “contiguity ratio c”) and was used to determine 

whether the dataset within a region is randomly distributed or a pattern is formed (Geary, 

1954) (Jeffers, 1973). The algorithm, attached below, can be utilized in both one or 

multidimensional applications (Geary, 1954) utilizing this autocorrelation hypothesis 

(Hungerford, 1991). The applications of Geary C in veterinary epidemiology have mainly 

been to identify large scale clusters (Moore & Carpenter, 1999). Its uses have been 

described in several veterinary epidemiological papers including a study on the prevalence 

of anaplasmosis in cattle (Hungerford, 1991) and the clustering of pseudorabies cases 

(Austin & Weigel, 1992) (Moore & Carpenter, 1999).  

However, a number of shortcomings have been identified in the use of Geary’s C. “Low 

samples sizes and non-nominal data” can affect its statistical significance (Robertson & 

Nelson, 2014). Moreover, data points within clusters observed to be very closely related 

may not be taken into account and thus the detection of hot spots can be overlooked 

(Moore & Carpenter, 1999). 
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Figure 1 Geary's C or Geary's Ratio Algorithm (Geary, 1954) 

 

B. Global Moran’s I 

 

Moran’s, I was developed by Patrick Moran in 1950 as a form of quantifying 

autocorrelation within a dataset (Moran, 1950). This statistic “describes the relationship 

between a variable of interest, such as disease prevalence, that is associated with the 

spatial location of points e.g. cattle herds” (Perez et al., 2002). This process is carried out 

by measuring spatial autocorrelation using feature values and feature locations at the same 

time (Li et al., 2007). This in turn deems whether there is random, clustering or dispersed 

distribution. In addition, the significance of the distribution that has been calculated is 

assigned a confidence level with a Z-Score (the degree of deviation from the mean when 

standard normal distribution occurs) and P-Value (the evidence against the null-

hypothesis) (Mitchell, 2005) (Ebdon, 1985). A P-Value of <0.05 and a significant Z-Score, 

one can assume the Global Moran’s I is of strong statistical confidence (Mitchell, 2005). 

Though it’s a powerful tool in the recognition of large-scale clusters, one disadvantage of 

using Global Moran’s I is that it may ignore “close, non-adjacent areas” (Moore & 

Carpenter, 1999).  

 

Global Moran’s I is used as a statistic of inference, therefor one can only interpret the 

results within the frame of reference of the null hypothesis. The null hypothesis in the case 

of Global Moran’s I is that the dataset being analysed, is distributed randomly or dispersed 

(Mitchell, 2005). Its applications are far reaching in veterinary epidemiology and is the 

most common spatial analysis tool for infectious diseases. Bluetongue Virus clustering 

was analysed using this method in Australian cattle (Ward & Carpenter, 1995). In one 

study (Perez et al., 2002), researchers used Global Moran’s I to determine whether 

clustering was observed in bovine tuberculosis in regions of Argentina. Another study, 
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used the statistic to determine whether there was a cluster pattern of the reproductive ratio 

(R0) of African Swine Fever in the Russian Federation outbreaks (Iglesias et al., 2016). 

The same researchers once again implemented the tool to observe clustering of outbreaks 

in African Swine Fever on the island of Sardinia (Iglesias et al., 2017). This demonstrated 

its robustness as a spatial analysis statistic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Moran's I and Global Moran's I Algorithm (Mitchell, 2005) 



 9 

C. Local Moran’s I  

 

Global Moran’s I can be distinguished from Local Moran’s I as the former results in one 

value to summarize a whole study area while the latter analyses at the smaller local area, 

resulting in multiple values for each area analysed. If there is no global autocorrelation or 

clustering in the whole study area, clustering may still occur at a local level (Anselin, 

1995). The aggregate values taken from each local study area may yield overall clustering. 

Like Nearest Neighbour, if the calculated index is more than one (>1), the distribution is 

considered dispersed and less than one (<1) as clustered. The Z-Score and P-Value are also 

important in determining Local Moran’s I significance. Local Moran’s I as such, is used as 

a tool to analyse map hotspots, identifying clusters and outlier values in diseases 

(Robertson & Nelson, 2014). Its application in testing spatial autocorrelation and 

clustering in sub-regions has been utilized in the case of avian influenza (H5N1) in 

Thailand (Tiensin et al., 2009) and of foot-and-mouth disease in China (Zhang & Zhao, 

2015). 
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Figure 3 Local Moran's I Algorithm (Mitchell, 2005) 
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D. Kulldorff Scan Statistic  

 

Another technique to determine if data points are clustered or random “in a 

multidimensional point process” is the Spatial Scan Statistic (Kulldorf, 1997). This is 

achieved by creating a hypothetical “circular window” on a map within which all the 

data points to be examined are included (Ward & Carpenter, 2000). 

The circular window is centred at each point creating a possible cluster with 

neighbouring points within the window. The technique then uses Poisson and 

Bernoulli distribution analysis to determine any clustering (Ward & Carpenter, 2000). 

Poisson distribution in spatial analysis calculates the probability that an event or 

number of events may occur in particular space (Haight, 1967). This can be done only if 

the events can be given a whole number and are independent of each other. Bernoulli 

distribution describes the density of probability of event occurring by assigning double 

(Yes/No or True/False) outcome to each data point. (Upspensky, 1937). One drawback 

identified in its application is that small numbers of values increases the likelihood of false 

positives and there has been shown a limited utility when disease pattern changing rapidly 

(Moore & Carpenter, 1999). Its applications include the epidemiological analysis of 

porcine epidemic disease virus (PEDV) in the United States (Alvarez et al., 2016) and in 

the investigation of the spatial relationship of bovine tuberculosis strains between cattle 

and badgers (Olea-Popelka et al., 2005).  
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2. The application of GIS as an aid in infectious diseases analysis;  

 

The geographical location of a disease, outbreak or vector has always been important in 

the understanding the epidemiological aspects of a pathogen. Since the late 1980s and 

early 1990s, the availability of personal computers (pcs) and the development of the 

internet has led to a surge in research in the area of spatial analysis of infectious disease, 

public health and animal health (Auchincloss et al., 2012).  

GIS has substantially increased the number of tools available to analysts in epidemiology 

(Smith et al., 2015). Though mapping provides a certain amount of visual information, it 

may not show any apparent spatial relationship between data points. GIS overcomes this 

problem using methods described below. As a result, GIS is often used a method of 

proving that an outbreak of a pathogen has occurred.   

 

A previous review on spatial clustering (Auchincloss et al., 2012) states that the most 

common spatial methods or tools used by researchers in GIS-based spatial analysis 

includes: 

• Spatial Proximity Calculations – calculation of distances 

• Aggregation Methods – approximation of summary measures across pre-specified 

geographic locations  

• Cluster Assessments – evaluation of none random spatial patterns 

• Spatial smoothing – developing an approximating function that captures important 

patterns in data.   

• Interpolation methods – a method of forming new data points from current data. 

• Spatial regression – used to examine the strength or direction of a relationship 

between variables.  

 

In 1988 one of the first, emergency response-oriented, spatial analysis tools was 

developed. Its aim was to be able to provide:  

• Printable up-to-the minute summary maps. 

• Maps of at-risk properties. 

• Investigative-insight into airborne transmission of pathogens  

• Farm identification within defined regional parameters.  

• Scenario based estimations of future epidemics. 
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This project, known as EpiMan-FMD became an integral part of the Central Disease 

Control and UK governmental response in the 2001 FMD outbreak (Durr & Gatrell, 2004).  

The use of GIS in the event of an epidemic outbreak is varied. It includes: 

• Indication of control areas. 

• Surveillance zone formation. 

• Map production for governmental control agencies and the public. 

• Risk analysis of at risk areas/ nearest neighbours. 

• Investigation of probable sources of infection. 

• Planning surveillance and vaccination schemes. 

• Wildlife control measures. 

• Cull programs. 

• Organization of movement of animals (Durr & Gatrell, 2004). 

 

The use of spatial analytics tools within GIS have been shown to be vital in providing 

insights into the epidemiological nature of a pathogen. It is most notably pertinent to the 

area of regional risk factors, economic costs and the effective of current and future control 

measures.  

One important aspect of spatial analysis of an epidemic is the availability of geographical 

information. The key information required for an effective and accurate analysis include, 

accurate point data of local outbreaks and accurate locations of farms or other at-risk 

locations e.g. zoos, petting farms, menageries. New Zealand became the forerunner in the 

provision of a national database (AgriBase) of geocoded farms throughout both islands 

(Sanson & Pearse, 1997). Due to the fact that this database is necessary for various 

applications like emergency services, environmental investigations and utility network 

developments, the database is constantly updated with farm locations and point data on 

farm-gate locations for physical access to farms. The mapping is then linked to the 

national land registry and open-sourced making it accurate, free and ideal for disease 

control investigations (Sanson & Pearse, 1997).  

 

When the outbreak of Foot and Mouth Disease was confirmed in 2001, the UK’s 

Department of Environment, Food and Rural affairs (DEFRA) (formally Ministry of 

Agriculture, Fisheries and Food) decided to use GIS to analyse the data. However, the 

farm locational data recorded in the past had been as Ordinance Survey local grid 
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references, which were then converted to the national map and inputted into GIS. This 

laborious job involved numerous field investigators locating farms and recording their 

respective GPS coordinates. The result of which was the formation of a database that 

would in future aid in the control of future outbreaks in FMD and other pathogens (Durr & 

Gatrell, 2004).  

The availability of disease outbreak reports by the World Organisation for Animal Health 

(OIE) has provided a vital platform in the investigation of the pathogens on a continental 

or global basis. This collation of data, in a free database, in chronological order for each 

disease provides the bulk data necessary for spatial and spatiotemporal analysis as well as 

possible insights into the basic spread of pathogens over a large geographical area. 

The objective of the VetEpiGIS programme was to develop a suite of tools for the 

management spatial information in the investigation of infectious diseases (Mazzucato et 

al., 2017). In doing so, these proposed, easy-to-use tools, which could allow researchers or 

veterinary public health officials to implement complex methods of spatial analysis 

without the years of GIS training usually required. In doing so, quickly organize a 

framework and execute disease control measures. This basic idea of breaking down the 

barrier of technological inexperience necessary for this field could help makes 

epidemiology more accessible to researchers and the public alike. Furthermore, the 

simplification of GIS specific tasks can remove or stem the amount of errors related to 

analysis that is particularly prevalent in users who are at an “Enthusiasts” level (URISA, 

2013).  

The project developed a number of plug-ins to be used in conjunction with the 

functionalities provided by QGIS. This allowed users to:  

1. “Capture, store and manage geospatial data on farms, outbreaks, and disease 

response measures (e.g. the creation of restriction areas)” (VetEpiGIS-Tool); 

2. “Share data among the VetEpiGIS users and between a VetEpiGIS user and a 

centralized data collector” (VetEpiGIS-Group); 

3. “Analyse spatial data, through a set of predefined statistical methods” (VetEpiGIS-

Stat). 

(Mazzucato et al., 2017) 
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3. Future application of GIS in Veterinary Epidemiology 

 

Future applications of geographical information systems will involve the use of “data 

mining” i.e. the examination of large database to generate information (Moore & 

Carpenter, 1999). This has to some extent already occurred with the implementation of 

spatial analysis of large scale data in the context of epidemiology in what has been 

described as the “Big Data Era” (Mooney et al., 2015). The cornerstones of “Big Data” 

have been described as the “3V’s: high variety, high volume, and/or high velocity 

information assets” (Mooney et al., 2015). This type of analysis of this size of data could 

allow epidemiologists to better predict future outbreaks from occurring and thus 

preventing them.  

 

(Mooney et al., 2015) go on to predict that all future epidemiologists will need basic 

programing skills in order to apply the information and knowledge gathered into future 

hardware and software developed.  

It was proposed to depart from the tradition of two dimensional maps to the development 

of new mapping techniques, which may serve to understand and visualize epidemiological 

data in new ways (Moore & Carpenter, 1999). This has come to a certain realisation with 

advent of virtual reality software and could open directions in understanding 

georeferenced data that (Vitek et al., 1996) previously stated would cause a “renaissance” 

in the use of maps. The link between GIS and virtual reality has been developed with the 

use of “virtual reality modelling language” (VRML) (Huang et al., 2001) and a “virtual 

reality GIS analysis platform” has been proposed (Wang et al., 2017). 

 

Though the software and hardware is ever changing, like cloud-based computer and data-

capturing, the use of GIS in the study of diseases will become a more essential skill 

required by veterinary epidemiologists in the future.  
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4. A review of relevant literature pertaining to African Swine Fever case 

study 

 

African Swine Fever Virus (ASFV) is an arthropod-borne DNA virus that causes African 

Swine Fever (ASF). This arbovirus is part of the Asfaviridae family with a single serotype 

though differences in virulence are observed. ASFV, a non-zoonotic virus, affects 

domestic pigs and Sus scrofa (wild boar) of all ages (Arias et al.,2002) (OIE 1 African 

Swine Fever Disease Card, n.d). The arthropod vector mainly responsible for transmission 

of the virus is the soft tick species including Ornithodoros erraticus (located in Iberian 

region) and the portions of the Ornithodoros moubata complex. In addition, he virus can 

be transmitted per os, through fomites and bodily excretions. Normally the virus causes 

100% morbidity in swine and mortality rates rely on the virulence level. It’s normally 

associated with high mortality (>80-90%) but lower virulence strains can cause chronic 

forms of the disease. With high environmental resistance levels, this may account for the 

transmission pathogen over a large geographic distance (OIE 1 African Swine Fever 

Disease Card, n.d) 

 

A) Distribution 

Up to the middle of the 20th century, ASF was confined to the continent of Africa, and 

endemic to most Sub-Saharan countries. The first recorded outbreak was recorded and 

then described in Kenya in 1907 and 1921 respectively (Arzt et al., 2010). In 1957, 

outbreaks were recorded in Portugal, with the Iberian Peninsula becoming endemic. The 

disease was contained and eradicated in this region in the mid 1990’s by using strict 

slaughtering legislation (Costard et al., 2013).  

 

Up until 2012, it was thought that the virus was endemic only to Africa, Italy and Sardinia 

with sporadic outbreaks in Europe and America (Costard et al., 2012). However, the 

introduction of the (highly virulent) genotype II ASFV to Georgia in 2007 saw the 

progressive spread of the disease across The Caucasus or Caucasia with outbreaks reported 

in Armenia, Azerbaijan as well as Iran and Russia (Chapman et al., 2011) (Gogin et al., 

2013).  

According to a Food and Agriculture Organization of the United Nations (FAO) report, 

Russia had become an endemic country that could place Europe at risk to African Swine 
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Fever (Khomenko et al., 2013). The spread of ASF within the Russian Federation starting 

in 2007, according to a FAO 2013 report, attributes the initial spread of the virus through 

wild boar (Sus scrofa) populations (Sylvatic Cycle). After the establishment in the wild 

boar populations, there was a spill-over into domestic pigs. The majority of which 

occurred on low biosecurity farms or backyard farms where contact between wild boar and 

domestic breeds occurred frequently (Gogin et al., 2013). This connection with low 

security farms was confirmed because the timing of outbreaks reported also reflected the 

production-seasonality of small-holding farms, with 75% of outbreaks occurring between 

June and November. The FAO predicted the spread of ASFV into European Union 

countries due to the high density of wild boar distributed across central and western 

Europe (Putmen et al., 2011). In addition, the long distance spread of the ASFV across the 

Russian Federation can be attributed to the practice of swill feeding to domestic pigs i.e. 

the feeding of food scraps and waste to pigs (Oganesyan et al., 2013). This practice has 

been banned in the EU and most other countries worldwide by 2002. A cycle was formed 

known as the “Catering Cycle” by the FAO. This describes the process of pig products 

being produced and sold by farms infected with ASF to consumers in another part of 

Russia, generally areas with less pig production. It is then consumed and the 

leftovers/waste is then sold/given to other pig farms in this new vicinity, causing outbreaks 

in this area thus creating a “Catering Cycle”. These small backyard farms formed a 

reservoir for ASF in Russia as a result (Khomenko et al., 2013). This prediction of EU 

outbreaks was correct, with the first outbreaks in European Union countries reported in 

2014 in Lithuania, Poland, Latvia and subsequently followed by Estonia in 2015. In June 

2017, Czech Republic had its first outbreak of ASF.  

 

The 2013 FAO report cited porous borders between Russia and several Eastern European 

countries like Ukraine as a source of transfer of infected products. In addition, countries 

like Latvia and Ukraine have high proportions of low security pig farms that could form 

similar reservoirs found in Russia (Khomenko et al., 2013). This is confirmed by the 

mapping analysis carried out by Eurostat. As the figure below illustrates, a high proportion 

of farms in Eastern Europe can be classified as low income with low numbers livestock 

(Khomenko et al., 2013). However other articles suggest wild boar movements from 

Russia to Belarus and subsequently into the European Union as the cause of the spread 

(Gallardo et al., 2014). The use of swill feeding despite being banned is still prevalent in 
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many backyard holdings, and illegal trade of pork products may account for the trans-

frontier transmission and the establishment of the disease (Sánchez-Vizcaíno et al., 2013). 

 

 

Figure 4 Average Economic Size of Farm Holdings, by NUTS 2 REGIONS, 2013 – 

(thousand Euro) (Agricultural Statistics at the Regional Level at 2013, EUROSTAT, 

Europe). 

Past outbreaks analysed in Zambia have found that catering waste was the probable cause 

of many outbreaks. During the detailed analysis, no evidence of sylvatic hosts (warthog 

and soft ticks) were found leading the investigators to the conclusion that kitchen waste 
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fed to the pigs was the probable source of infection (Simulundu et al., 2017). This would 

lead one to think that outbreaks in Eastern Europe could, at least in part, be attributed to 

the process of swill feeding to pigs.  

 

B) Diagnosis and Control Measures 

African Swine Fever cannot be differentiated solely on clinical signs from Classical Swine 

Fever (Arias et al., 2002). As a result, different diagnostic tools are employed.  

Identification tests include: 

• Isolation through cell culture inoculation 

• Haemadsorption Test (HAD) – in endemic regions 

• Fluorescent Antibody Test (FAT)  

• Polymerase Chain Reactions (PCR) 

Serological Tests include: 

• Enzyme-linked Immunosorbent Assay (ELISA) 

• Indirect Fluorescent Antibody Test (IFA) 

• Immunoblotting Test (IB) 

(OIE 1 African Swine Fever Disease Card, n.d) 

 

In recent years, with the geographical spread of ASFV, a number of diagnostic tools were 

improved (Mur et al., 2016). Researchers in Spain have developed an in-field technique to 

detect ASF antibodies in less than 10 minutes using immuno-chromatographic devices 

with very high accuracy (99% specificity and 100% sensitivity) (Perez et al., 2011). Filter 

paper used on the samples in the field has provided another technique that relies on fewer 

samples to be taken and transported. It detects ASFV antibodies and antigens in the filter 

paper (Uttenthal et al., 2013).  

 

Medical prophylactic measures are limited in African Swine Fever due to the fact that no 

vaccine is available and no treatment has been shown to be effective.  

Prevention through sanitary prophylactic measures published by the OIE have formed the 

guidelines employed by most countries to control the spread of ASF.  

The measures vary depending on the epidemiological nature of the country. Non-infected 

countries are recommended to adhere to strict import legislation with regard to animal 

transport and to dispose of imported waste (from transport vessels) appropriately.  
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Endemic or infected countries should prevent the interaction between arthropod vectors 

like Ornithodoros species and swine.  

 

State veterinary measures in the event of an outbreak include: 

• Slaughter of all pigs on the holding regardless of infectivity. 

• Disposal of waste and remains in the correct manner. 

• Supervised cleaning and disinfection of the holding. 

• Epidemiological enquiry formation to investigate any sources of infection 

• Formation of protection and surveillance zones and control of movement of 

susceptible species.  

• The holding is totally destocked of animals for a period before restocking 

(OIE 1 African Swine Fever Disease Card, n.d) 

 

 

According to a 2013 FAO report the lack of treatment or vaccinations for ASF has resulted 

in many countries attempting to control ASF by introducing movement bans of pigs and 

pork products. However, these efforts are often limited due to the fact that state veterinary 

services lack the relevant funding and expertise. Furthermore, the report goes on to infer 

that economic losses due to culling results in small scale farmers being less likely to report 

an outbreak due to the lack of state compensation (Khomenko et al., 2013).  

 

The FAO report goes on to make a number recommendations for areas that have not yet 

been infected. These include: 

• Domestic pig and Sus scrofa population quantification and distribution analysis 

• Put policies in place for cooperation between intergovernmental agencies  

• Identification of low biosecurity pig farms in the region vulnerable to ASF 

• Rapid containment protocols in place 

• Appropriate compensation from the state or European Union to promote 

compliance from low income farmers.  

• Preventive or emergency population control of Sus scrofa (Khomenko et al., 2013).  

 

Sardinia has long been affected by African Swine Fever with ASFV being endemic there 

since 1978. A review of control measures has found a number of factors that are impeding 
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the total eradication of ASF (Mur et al., 2016). These factors may also be associated with 

maintaining outbreaks in Eastern Europe. They include: 

• High proportion of backyard/small farmers with lacking appropriate knowledge, 

may not adhere to best practices (e.g. feeding and breeding) and possess deficient 

holdings in the area biosecurity.  

• The practice of free range farming with communal breeding areas within a district 

of town.  

• Black-market trading of swine products. 

• Large areas void of humans where reservoirs for disease may be harboured without 

surveillance.  

• Lack of disposal of hunting by-products like offal may account for the spread (Mur 

et al., 2016). 

 

In summary, the literature with regard to African Swine Fever outbreaks in Europe is vast, 

and one can infer that the large and varied numbers of scientific studies in this field is a 

reflection of potentially detrimental impacts it can have on pig production in Europe and 

the Eurasian region.  
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Goals/Questions 

 

The goal of this paper in its basic form was to convey the importance of spatial analysis in 

the field of veterinary epidemiology for those with limited experience of Geographical 

Information Systems (GIS). This was undertaken by using case study example utilizing the 

software “VetEpiGIS” developed by Dr Solymosi. This QGIS suite of plugins is a free 

independent piece of software with an intuitive interface, which allows the user to 

undertake spatial cluster analysis of datasets within the QGIS programme. The hope of this 

paper was to illustrate the plugin’s practical abilities and to demonstrate its necessity not 

only in research based compositions but in the wider practical field like in state veterinary 

institutions by implementing the four statistical tools of VetEpiGIS for the analysis of 

geographical pattern in animal health event distribution. The methodology has been 

described in minute detail in an effort to make the results reproducible and to furthermore 

be applied to other similar studies for anyone who lacks QGIS or mapping experience. In 

doing so, this paper may allow persons at a district veterinarian level run cluster analysis 

“on the fly” to identify clustering in their region and implement or adapt the relevant 

control measures. At an undergraduate veterinary level, this paper hoped to illustrate the 

benefits of this field of study as a worthwhile and practical outlet that could be 

implemented in future veterinarians’ careers.  
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Materials and Methods1 

 

In this African Swine Fever case study, the outbreak data points were attained by manually 

downloading every available outbreak report2 for African Swine Fever between 2007  

and 2017, which numbered approximately 5020 outbreak reports. These reports are  

available from the WAHIS Interface on the World Organisation for Animal Health 

website (OIE 2 Disease Information Report Archive, n.d.)  

 

Pre-2006 reports had limited availability online and probably have not been digitized 

accordingly. The fact that African Swine Fever has spread into Eurasia and 

consequently, Russia and Eastern Europe in the years 2007 to 2017, the acquired 

downloaded outbreak reports encompass these events. In the process of the downloading 

the animals developed a linux code in order to download the OIE reports rapidly and in 

bulk. This sped up the process that previously required individually downloading all 

~5000 reports by individually downloading each report by clicking on year and finding 

each outbreak along the list of various disease reports. The linux code can be adapted to 

any other disease reports on the WAHIS Interface with the possibility of adapting the code 

to other disease reporting databases. This code alone could prove a very important 

development in processing bulk data related to infectious data. 

 

Dr Solymosi parcelled the longitude and latitude coordinates of each outbreak report 

using an R-Script and saving them to a .CSV file with an ID number and X (latitude), Y 

(longitude) coordinates and Datum (dates) for each report.  

1. The .CSV file was added to QGIS Version 2. 18 as a text delimited file with a 

Semicolon Custom Delimiter, Geometry Definition of Point Coordinates. In the 

Coordinate Reference System Selector (CRS) WGS 84 / Pseudo Mercator (Authority ID 

EPSG:3857).  

 

                                                 
1 The methodology of this section will be described in detail in order for it to be replicated 

for 

those researchers with little to no experience in QGIS mapping and using the VetEpiGIS 

plugin. 

2 Please find attached example of an OIE ASF outbreak report at the end of the document.  
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2. Base map layers were added using http://www.gadm.org mapping database. 

Figure 5 Create a layer from a delimited text file. Note custom delimiters using semicolon and point coordinates geometry 

definition 

Figure 6 Output map formed from text delimited file 

http://www.gadm.org/
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The Shapefile “gadm28_levels.shp.zip” was downloaded from the above website. This 

whole world base map comes in six dissolved layers with one for each level of subdivision 

in shapefile. The downloaded files were added by dragging and dropping the downloaded 

files onto the QGIS mapping window. This allows any researcher to add a mapping layer 

with need for knowing the type being added. QGIS will filter out the files that are not 

recognized and identify those files as invalid data sources. The valid sources were 

uploaded to the system with multiple layers of varying detailing shown in the layers 

section. At first, nothing was visible on the map, the layers were edited on the Layers 

Order Panel. Furthermore, the Coordinate Reference System (CRS) was set to WGS 84 / 

Pseudo Mercator (Authority ID EPSG:3857) to coincide with the .CSV data points.  A 

map like that one found below should be generated and various layers selected.  

 

 

Figure 7 African Swine Fever Dataset Outbreaks and GADM mapping data base layer 

 

 

3. To analyse of the data points generated by .CSV file, the QGIS plugin was 

downloaded by opening Plugins dropdown menu and the accessing the Plugin 

Repository/Database through the “Manage and Install Plugins” Button. VetEpiGIS 

plugin can be located using the search box and installed. Three toolbars as illustrated 

below should appear. From left to right the following symbols represent: 
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Figure 8 VetEpiGIS Suite Toolbar (Left to Right) Stat, Group and Tool 

VetEpiGIS-Stat 

A. Global Moran’s I/Geary’s C 

B. Local Moran’s I (LISA) 

C. Scan Statistic 

 

VetEpiGIS-Group 

D. Create Outbreak Layer with a dropdown menu to Create Point, Create Polygon 

Drawing and Add Element to Outbreak Layer. 

E. Create Point of Interest 

F. Create Buffers with a dropdown menu to Create Points from POI layer and Create 

Zones. 

G. Database Layers dropdown menu 

 

VetEpiGIS-Tool 

H. Set Up Working Database 

I. Merging Databases 

 

 

4. For the purposes of this dissertation, the focus was put on VetEpiGIS-Stat, which 

allows the user to avail of Global Moran’s I, Geary’s C, Local Moran’s I and a Scan 

Statistic tools. 

 

In this case study, Ukraine was identified as a viable example to analyse the possibility of 

clustering patterns of African Swine Fever from the outbreak reports published. The 

following methodology was undertaken to investigate clustering in the relevant districts.  

the above methods, the following tasks were undertaken.  

 

Using the Select Features by area or single click tool was selected and Ukraine was 

highlighted, its features and districts copied and pasted as new vector layer and assigned as 

a “Study Area”. The gadm28_adm2 map with the detailed districts of Ukraine was selected 
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using a Query Builder. In doing so, this illustrated the regions of Ukraine only, thus 

removing the rest of world map from the viewer. The ASF data set was then filtered to 

show only data points or outbreaks that had occurred within Ukraine using the Select by 

Location function on the Attributes Toolbar. This gave the researchers the ability to then 

analyse the relevant filtered data set within the districts of Ukraine alone. The result of 

which was illustrated below in cartological form below. 

 

 

 

 

Figure 9 Map of Ukraine including the state's districts and the distribution of African Swine Fever Outbreaks 

Within the QGIS Analysis Toolbar, the Count Points in Polygon tool was selected and the 

data points within the study area (Ukrainian districts) were counted and labelled 

“Study_dat”.  

 

The attribute table was then edited with the area of each district in Ukraine calculated with 

the addition of a New Field to the table labelled “Uarea’ The number data points per 

district area were then calculated and added to the table using the New Field tool and the 
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Dialog Expression page with the following expression “NUMPOINTS”/”Uarea”. This 

expression in the attribute table was labelled “Casparea”.  

To summarize a number of extra fields were added to the original attribute: 

A. NUMPOINTS – the number of data points (outbreaks) within each district. 

B. Uarea – the area of each district. 

C. Casparea – the number of points per area within each district.  

 

Following this, the 4 tools within the VetEpiGIS-Stat plugin were applied as follows:  

 

Global Moran’s I and Geary’s C 

The dataset was selected and the Global Moran’s I/Geary’s C tool was selected (see 

previously for the relevant icon) and Casparea was selected from the Data Field giving an 

output as follows.  

 

Moran's I: 0.023924266769 

Expectation: -0.0015923566879 

Variance: 0.000194209111579 

Moran's I standard deviate: 1.83100025213 

p-value: 0.0335502527224 

 

Geary's c: 0.266032823049 

Expectation: 1.0 

Variance: 0.139526315877 

Geary's c standard deviate: 1.96493674939 

p-value: 0.0247107793317 
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Local Moran’s I  

 

The dataset was selected and the Local Moran’s I tool was selected (see previously for the 

relevant icon) and Casparea was selected from the Data Field. The output of the test was 

then illustrated on the map viewer by editing the properties of the data set. This was 

achieved by using a Categorized Style and the P-values of less than 0.05. Two 

classifications were labelled: Significant and Not Significant. The Figure below 

demonstrates the output. 

 

 

 

 

Figure 10 Map of Ukraine illustrating the statistically significant regions (p-value >0.05) of clustering in local districts 

using Local Moran's I analysis 
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Kulldorff Scan Statistic 

 

Finally, the Kulldorff Scan Statistic was employed. However, in order to utilize this tool, 

the Expected Case Number had to be calculated for each district. This was achieved by 

adding a new field to the attribute table. This employed the expression dialog and 

employed this calculation: “Uarea” * (sum(“NUMPOINTS”)/sum(“Uarea”))  

i.e. the area of the districts multiplied by the sum of the number of data points divided by 

the sum of the area of the districts of Ukraine. This new field was labelled “Expnum” and 

saved. 

The Kulldorff Scan Statistic tool was selected and the following input was entered: 

• Likelihood Type: Poisson 

• Case Field: NUMPOINTS 

• Population Field: Uarea 

• Expected Case Number: Expnum 

 

The following output was generated after approximately 15 minutes with a default setting 

of an upper bound of 0.50.  

 

Most likely cluster details: 

Feature IDs: 475, 476, 486, 490, 480, 491, 489, 474, 473, 478, 477, 38, 31, 483, 493, 492, 

487, 488, 23, 482, 44, 481, 46, 42, 479, 30, 425, 25, 45, 494, 436, 29, 485, 484, 34, 47, 

450, 43, 422, 495, 440, 39, 40, 36, 35, 438, 448, 432, 445, 437, 193, 33, 424, 181, 28, 449, 

429, 427, 37, 209, 442, 292, 446, 444, 443, 423, 26, 273, 204, 198, 24, 447, 4, 185, 27, 

426, 41, 439, 441, 428, 190, 263, 191, 2, 433, 32, 199, 282, 21, 281, 192, 435, 270, 434, 

431, 430, 207, 0, 208, 189, 268, 269, 183, 206 

Case number: 89 

Population: 173619866263 

Expected case number: 47.38 

SMR: 1.88 

Log-likelihood ratio: 19.09 

Monte Carlo rank: 1 

P-value: 0.001 
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Secondary cluster details: 

Feature IDs: 402, 415, 406, 396, 399, 418, 421, 412, 411, 413, 373, 388, 401, 376, 397, 

391, 398, 393, 389, 410, 381, 390, 384, 416, 409, 379, 408, 385, 407, 386, 383, 371, 380, 

417, 419, 395, 375, 377, 392 

Case number: 43 

Population: 61087260580 

Expected case number: 16.67 

SMR: 2.58 

Log-likelihood ratio: 15.96 

Monte Carlo rank: 1 

P-value: 0.001 

 

The output was then illustrated in map form by editing the style properties of the data set. 

This was achieved by using a Categorized Style and selecting the Primary Cluster data. 

Two classifications were labelled: True and False, representing the clustering in the 

Ukrainian districts. This was repeated for the secondary cluster in the output. Figures 11 & 

12 demonstrate the output. 

 

Figure 11 Kulldorff Scan Statistic of Ukrainian ASF Outbreaks – Primary Cluster 
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Figure 12 Kulldorff Scan Statistic of Ukrainian ASF Outbreaks - Secondary Cluster 
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Results and Discussion of the Analysis of African Swine Fever in Ukraine 

 

Global Moran’s I  

Global Moran’s I is also known as a correlation coefficient that computes the overall 

spatial autocorrelation of a data set. The null hypothesis (H0) used for this statistical tool 

states that the data points being analysed are randomly dispersed. The index value 

calculated using VetEpiGIS was 0.02392. Due to the fact that the Global Moran’s index 

value of -1 indicates ideal clustering of varying values, a value of 0 (or more correctly –

1/(n-1)) equates to no autocorrelation and a value of +1 demonstrates ideal clustering of 

similar values, one can interpret that these results have attained a certain degree of 

clustering tending towards the aggregation of similar values (Mitchell, 2005). The 

statistical significance of this result can be deemed robust due to the fact the standard 

deviate (1.8310) is positive and the p-value is less than 0.05 (0.0336). In summary, it can 

be deduced that the Global Moran’s I results show a slight positive autocorrelation of 

African Swine Fever outbreaks in the country of Ukraine to a confidence level of 95%.  

 

Table 1 Results of Global Moran's I Analysis of African Swine Fever in Ukraine 

Moran's I 0.023924266769 

Expectation -0.0015923566879 

Variance 0.000194209111579 

Moran's I Standard Deviate 1.83100025213 

p-value 0.0335502527224 
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Geary’s C  

The Geary’s C ratio was calculated as 0.2660 using the VetEpiGIS-Stat plugin. 

In contrast to the Global Moran’s I statistic, Geary’s c ratio ranges from 0 to 2, whereby a 

value tending towards 0 indicates positive spatial correlation, a value of 1 indicates no 

spatial autocorrelation (i.e. values are spatially independent or randomly distributed) and 

values tending towards 2 are negatively spatially correlated (i.e. dissimilar values 

aggregate or colloquially as a checkerboard pattern). The null hypothesis used in this 

statistical tool states that the data points being analysed are randomly dispersed.  

As such, it can be deduced that there was a strong, positive autocorrelation of the 

outbreaks in the Ukrainian study area. With a positive Geary’s C standard deviation (of 

1.9649) and a confidence level of less than 0.05 (0.0247), one can deduce with a 

confidence of over 97% that the outbreaks in the study area of Ukraine have a strong, 

positive, spatial correlation.  

 

Table 2 Results of Geary's C Analysis of African Swine Fever in Ukraine 

Geary's C 0.266032823049 

Expectation 1.0 

Variance 0.139526315877 

Geary's c Standard Deviate 1.96493674939 

p-value 0.0247107793317 
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Local Moran’s I Analysis 

 

The Local Moran I is a statistic used to identify clusters and outliers at a local level. The 

results as graphed below show a significant clusters in the following districts (see Table 4).  

 

 

Table 3 Results of Local Moran's I analysis sorted in terms of decreasing, statistically significant districts (p-value 

>0.05), generated using the VetEpiGIS-Stat plugin. 

 

District Name Li E_Li Var_Li Z_Li p_value Neighbours Influence 

Poltava 

Lubens’ka 
8.804516595 -0.00159235 0.31008184 15.81415125 0 High-high TRUE 

Poltava 

Lubens’kyi 
9.519433638 -0.01273885 2.476254409 6.057511701 6.91216E-10 High-high TRUE 

Transcarpathia 

Berehivs’kyi 
3.264782897 -0.00636942 1.23847194 2.939393181 0.001644278 High-high FALSE 

Transcarpathia 

Vynohradivs’kyi 
2.816126638 -0.00477707 0.929013644 2.926693314 0.001712933 High-high FALSE 

Mykolayiv 

Ochakivs’kyi 
1.80431722 -0.00318471 0.619550278 2.296362745 0.010827575 High-high FALSE 

Mykolayiv 

Irshavs’kyi 
2.747650208 -0.00955414 1.857373317 2.023109333 0.021530938 High-high TRUE 

Transcarpathia 

Irshavs’kyi 
2.379290454 -0.00955414 1.857373317 1.752823942 0.039816116 High-high TRUE 

Odessa 2.157228009 -0.00796178 1.547925164 1.74028746 0.040904277 High-high FALSE 

 

 

Derived from the statistically significant data as shown in Table 4, one can affirm that 

clustering has occurred in the above districts. The Local Moran’s index (Li) for these 

districts has been calculated as above 1 with a high Z-score (Z_Li) over 1.74. 

Based on significant levels (p-values) ranging from not significant, >0.05, 0.01 to a 

confidence level of less than 0.001 (99.9%) the following map was developed.  
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Figure 13 Local Moran's I cluster analysis of African Swine Fever outbreaks in Ukraine 

As illustrated there is significant results in 8 districts in Ukraine with the districts of  

Lubens’ka and Lubens’kyi, within the Poltava region, showing very highly significant 

clustering with a confidence level of more than 99.9% (p-value > 0.001). The 

Transcarpathian districts of Berehivs’kyi and Vynohradivs’kyi showed high significant 

clustering of ASF to a confidence level of 99% (p-value > 0.01). Finally, the districts of 

Ochakivs’kyi and Mykolasvs’kyi (within the region of Mykolayiv), Irshavs’ky (within the 

Transcarpathian region) and the Odessa district of Savrans’kyi all indicate significant 

clustering that can be assessed with a confidence level of 95% (p-value > 0.05). 

 

The Local Moran’s I results were further investigated by displaying how the attribute 

“Neighbours” clustered (as shown in Figure 14), a new case generated during the Local 

Moran’s I analysis. The red districts represent areas where high rates of clustering were 

observed with a high number of outbreaks recorded. The blue areas represent areas with 

low clustering and low numbers of outbreaks reported. The pink districts show high areas 

of clustering with low numbers of outbreaks while purple areas representing districts of 

low clustering with high number of outbreaks.  
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Figure 14 Local Moran's I cluster analysis based on the “neighbour” case field depicting High-High, High-Low, Low-

High and Low-Low clustering relationships 

As one can see from the Figure 14, there are vast regions of high clustering of outbreaks in 

high numbers in the north, central and south west regions of the country. In terms of the 

oblasts of Ukraine (the secondary administrative levels or divisions of the state), these 

high-high clusters were observed in Chernihiv, Sumy, Poltava, Kirovohrad, Mykolaiv and 

Odesa. Pockets of high-high clustering was also observed in the far east and far west of the 

country in areas bordering the Russian Federation and Hungary.  
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Kulldorff Scan Statistic 

 

The Kulldorff Scan Statistic is used in the detection of clusters on a local level. The results 

have been recorded in Table 5 below and illustrated in Figure 15.  

 

Table 4 Results of Kulldorff Scan Statistic using Poisson likelihood type of African Swine Fever outbreaks in Ukraine 

generated using the VetEpiGIS plugin on QGIS.  

Cluster Case 

No. 

Population Expected Case 

No. 

SMR Log-likelihood 

Ratio 

Monte Carlo 

Rank 

P-

value 

Primary 89 173619866263 47.38  1.88 19.09 1 0.001 

Secondary 43 61087260580 16.67 2.58 15.96 1 0.001 

 

 

The tabulated data shows the number of cases in each detected cluster, the population 

field, the expected number of cases, the standardized mortality rate (SMR), log-likelihood 

ratio,  Monte Carlo rank and p-values. At first observation the statistical significance of 

these clusters are strong with an assigned confidence level of 99.9% (p-value = 0.001).  

 

 

The null hypothesis of the Kulldorff Scan Statistic is that the outbreaks are randomly 

dispersed. The data above as a result, rejected that null hypothesis and demonstrated two 

statistically significant cluster regions as illustrated geographically in Figure 15. The log-

likelihood ratio was calculated for each cluster of disease events and the highest two 

values became the primary and secondary clusters. In this case, log-likelihood ratio 19.09 

constituted the highest ratio and thus became the most-likely cluster or primary cluster. In 

other words, this cluster was least likely to occur randomly or by chance. In addition, the 

second highest log-likelihood ratio of 15.96 constituted the secondary cluster.  
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Figure 15 Kulldorff Scan Statistic Analysis of African Swine Fever in Ukraine with primary and seconday Clusters 

represented 

Figure 15 illustrates the extent of the cluster areas. The primary cluster represented in blue 

is located in the north east of the country and the secondary cluster is observed in the south 

west of Ukraine.  
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Conclusions 

 

Significant Clustering of African Swine Fever outbreaks have been identified and proven 

statistically significant using the spatial analysis tools employed by the VetEpiGIS plug-in. 

However, one must consider the application of these results in the control and eradication 

of the disease. According to the OIE (World Organization for Animal Health), Ukraine 

utilizes the following disease control measures: 

• Disease Control Measures 

• Border Control Precautions 

• Monitoring 

• Screening  

• General Surveillance 

• Movement Control Inside the Country 

• Stamping Out 

• Zoning 

• Control of Wildlife Reservoirs 

(OIE 3 WAHIS Interface Disease Control Measures, n.d.)  

 

These measures are implemented on domestic pig but little or no application of these 

measures is given to wild boar in Ukraine. Unlike ASF-affected European Union countries 

who have enlisted the above techniques in both domestic and wild swine. Suggestions laid 

out in a previous article in the control and eradication of ASF in Europe, include the 

following measures (Sánchez-Vizcaíno et al., 2013): 

• Centralized eradication control programme. 

• Control of the illegal trade and movement of animals stemming mainly from 

backyard holdings. 

• Education about the risks involved in the use of swill feeding of pigs in backyard 

farming, prohibit its use and enforce the prohibition. 

• Increase compliance of pig farmers with regard (Sánchez-Vizcaíno et al., 2013). 

 

Further evidence has shown that the implementation of a national control plan can be 

successful with near eradication of ASF in Spain in approximately two years (Costard et 

al., 2009) 
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One could infer from the data presented in this paper that hot-spots of clustering could be 

targeted for increased control measures. For incidence, taking Figure 13 into account, 

one could suggest that these eight statistically significant clusters could be targeted. 

Protection zones and surveillance zones could be set up around these districts. Targeted 

surveillance within these districts followed by identifying risk factors for the disease 

spread could prove successful. A strict ban on the movement of pigs within these districts 

could also be beneficial. This suggestion seems to be the most feasible as the clusters 

identified in the subsequent figures suggested larger geographic areas of control that may 

be not feasible for the State Veterinary Medicine Department of Ukraine. Though to fully 

infer this conclusion, a feasibility report would need to be undertaken.  

If the above plan was successful, subsequent targeted control measures implemented in the 

clusters identified in Figure 14 (Local Moran’s I – Neighbour clustering) and Figure 15 

(Kulldorff Scan Statistic). This may form a basis for the eradication ASF. Clearly this is a 

simplified spatial analysis of African Swine Fever clustering in Ukraine but could serve as 

an indicator of how eradication may occur. Further research on the spatial distribution, as 

well as the spatiotemporal distribution of ASF in Ukraine and the distribution of wild boar 

in Ukraine would be vital before any control measures are undertaken. 

 

According to an FAO report in 2010, the western half of Ukraine has very high density of 

backyard pig holdings with these densities ranging from 8.5 to 20 heads/km2 (Watch, 

2010). To reiterate, backyard holdings are often associated with low biosecurity measures 

and are at the highest risk of African Swine Fever outbreaks. The presumption that these 

areas could have large clusters and numbers of outbreaks of ASF is feasible.  However, 

when the clustering maps were observed (Figure 13 & 14 & 15), large regions of western 

Ukraine were devoid of any reported outbreak. The fact that Local Moran’s I and 

Kulldorff Scan Statistic analysis reported no clustering in this area of Ukraine would lead 

analysts to two possible conclusions. Firstly, the premise that Ukrainian backyard holdings 

have excellent biosecurity measures on par with the commercial pig industry throughout 

Europe. Secondly, and the more likely conclusion, is that there is a gross under-reporting 

of outbreaks in this area. It could be inferred that this is due to a lack of animal-owner 

knowledge of the disease, the lack of state veterinary regulation (from the State Veterinary 

Medicine Department of Ukraine) or the lack of state compensation that could deter 

farmers from reporting the disease in the first instance. The robustness of spatial analysis 

of infectious diseases depends upon the compliance with outbreak reporting. As such, this 
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analysis calls into question the statistical strength of the outbreak reports in Ukraine 

published by the OIE. Suggestions to rectify this problem would include improving the pig 

owners knowledge, improving the state veterinary institutions and guaranteeing infected 

holdings are given appropriate state compensation. This would, in turn, enhance the 

probability of reporting African Swine Fever, thus enabling the state veterinary institutions 

to comprehend the real impact of ASF and act accordingly. Accurate outbreak recording 

could allow the re-analysis of this case study material and therefore, give a better 

understanding of the clustering distribution of African Swine Fever in Ukraine.  

 

 

Overall, the application of the VetEPiGIS-Stat plugin was effective and efficient. The four 

statistical tools Global Moran’s I, Geary’s C, Local Moran’s I and Kulldorff Scan Statistic 

effectively analysed the outbreak data in the Ukrainian study area. One of the premises of 

this study was that the use of this plugin would allow researchers, with limited GIS 

experience, an easy to use tool in the spatial analysis of infectious diseases. In its 

utilization of this plugin, it was experienced that this plugin does in deed, require a certain 

level of expertise with regard editing data because a number of obstacles being identified 

during the case study analysis. Due to the fact that no user-manual was available at the 

time of writing this dissertation, it impacted the progress of the study. However, a user-

manual is currently being developed by the creators of the plugin, which will be essential 

for all those hoping to undertake similar studies with comparable experience using 

geographical information systems. A goal that was propositioned in this paper was the 

hope that this software would future veterinarians an easy to use application for the spatial 

analysis of disease data. The development of an in-depth user manual will be a step 

forward to attaining this goal.  

 

To conclude, the benefits of VetEpiGIS-Stat far outweigh its drawbacks. The four 

statistical tools within one plugin with a focus on infectious diseases, has enabled the user 

to quickly and effectively calculate the relevant data for disease events. Similar software in 

the GIS universe focus on one tool or don’t focus on its application in veterinary 

epidemiology. The fact that VetEpiGIS-Stat is part of a suite of plugins, allowing for a 

variety of disease analyses, has identified a much sought-after niche in geographical 

information systems.  
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Summary/Abstract 

 

Spatial clustering of disease events have long been analysed and multiple software 

programmes run various spatial analysis tools in order to determine this clustering. 

Analysis of the geographical pattern of the animal health event distributions may help the 

control and eradication of infectious diseases. VetEpiGIS is a free, platform independent 

QGIS plugin family. The application of the statistical piece of this tool (VetEpiGIS-Stat) 

will be presented by analysing the distribution of African Swine Fever Virus (ASFV) 

outbreaks in Ukraine as reported by the World Organization of Animal Health (OIE).  

Every ASFV outbreak report published by the OIE was downloaded between 2007 and 

2017 and Ukraine was selected for the analysis using VetEpiGIS-Stat. The data was 

parcelled and  filtered to represent only outbreaks occurring within the Ukrainian state. 

The four statistical tools of VetEpiGIS-Stat include Global Moran’s I, Geary’s C, Local 

Moran’s I and Kulldorff Scan Statistic. The null hypothesis (H0) that the distribution of 

African Swine Fever outbreaks in Ukraine was distributed randomly was employed for this 

analysis. The data was analysed using these tools. Global Moran’s I and Geary’s C both 

showed statistically significant (p-value > 0.05) mild positive autocorrelation (Global 

Moran’s Index= 0.0239)(Geary’s C ratio = 0.2660). Local Moran’s I analysis identified 8 

districts in Ukraine where clustering of ASF was statistically significant (p-value > 0.05). 

These districts include Lubens’ka, Lubens’kyi, Berehivs’kyi, Vynohradivs’kyi, 

Ochakivs’kyi, Mykolavs’kyi, Irshavs’kyi, and Sarans’kyi. The Kulldorff Scan Statistic 

was utilized, a primary and secondary cluster of ASFV were identified (p-value >0.001) 

using Poisson distribution. The results calculated from these analytic tools state that the 

null hypothesis can be rejected and statistically significant spatial clustering occurred 

African Swine Fever in Ukraine.  

Taking into account the limitations in the collated data, the study suggests these spatial 

analysis results could be applied to areas that require further control measures for ASF. 

The 8 districts with significant clustering, identified in Local Moran’s I analysis could 

provide a feasible framework on which areas to implement control measures. The results 

were also compared to data compiled by an FAO report in 2010 that focused on 

demonstrating the risks ASF to Europe. This comparison infers that gross under-reporting 

of ASF outbreaks may be occurring in areas of Western Ukraine with high densities of 

small/backyard pig holdings. 



 44 

Bibliography 

 

1. Agricultural Statistics at the Regional Level, Eurostat, Europa, Europe Union 

URL:http://ec.europa.eu/eurostat/statisticsexplained/index.php/Agriculture_statistic

s_at_regional_level. Last updated March 2017. Accessed 20 November 2017. 

 

2. Alvarez, J., Goede, D., Morrison, R. and Perez, A., 2016. Spatial and temporal 

epidemiology of porcine epidemic diarrhea (PED) in the Midwest and Southeast 

regions of the United States. Preventive veterinary medicine, 123, pp.155-160. 

 

3. Anselin, L., 1995. Local indicators of spatial association—LISA. Geographical 

analysis, 27(2), pp.93-115. 

 

4. Arias, M., Sánchez‐Vizcaíno, J.M., Morilla, A., Yoon, K.J. and Zimmerman, J.J., 

2002. African swine fever. Trends in emerging viral infections of swine, pp.119-

124. 

 

5. Arzt, J., White, W.R., Thomsen, B.V. and Brown, C.C., 2010. Agricultural diseases 

on the move early in the third millennium. Veterinary Pathology, 47(1), pp.15-27 

 

6. Chapman, D.A., Darby, A.C., Da Silva, M., Upton, C., Radford, A.D. and Dixon, 

L.K., 2011. Genomic analysis of highly virulent Georgia 2007/1 isolate of African 

swine fever virus. Emerging infectious diseases, 17(4), p.599. 

 

7. Costard, S., Wieland, B., De Glanville, W., Jori, F., Rowlands, R., Vosloo, W., 

Roger, F., Pfeiffer, D.U. and Dixon, L.K., 2009. African swine fever: how can 

global spread be prevented?. Philosophical Transactions of the Royal Society of 

London B: Biological Sciences, 364(1530), pp.2683-2696. 

 

8. Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J.M. and Pfeiffer, D.U., 2013. 

Epidemiology of African swine fever virus. Virus research, 173(1), pp.191-197. 

 

http://ec.europa.eu/eurostat/statisticsexplained/index.php/Agriculture_statistics_at_regional_level
http://ec.europa.eu/eurostat/statisticsexplained/index.php/Agriculture_statistics_at_regional_level


 45 

9. Cuzick, J. and Edwards, R., 1990. Spatial clustering for inhomogeneous 

populations. Journal of the Royal Statistical Society. Series B (Methodological), 

pp.73-104. 

 

10. Durr, P.A. and Gatrell, A.C. eds., 2004. GIS and spatial analysis in veterinary 

science. Cabi. 

 

11. Ebdon, D. Statistics in Geography (second edition). Oxford: Blackwell; 1985 

 

12. Elliott, P. and Wartenberg, D., 2004. Spatial epidemiology: current approaches and 

future challenges. Environmental health perspectives, 112(9), p.998. 

 

13. WATCH, F.E., 2010. FAO takes a close look at the pig Sector in Eastern Europe to 

better understand the threats of African Swine fever. 

 

14. Gallardo, C., J. Fernandez-Pinero, V. Pelayo, I. Gazaev, I. Markowska-Daniel, G. 

Pridotkas, R. Nieto, P. Fernandez-Pacheco, S. Bokhan, O. Nevolko, Z. Drozhzhe, 

C. Perez, A. Soler, D. Kolvaso, and M. Arias, 2014: Genetic variation among 

African Swine Fever genotype II viruses, Eastern and Central Europe. Emerg. 

Infect. Dis. 20, 1544–1547. G 

 

15. Geary, R.C., 1954. The contiguity ratio and statistical mapping. The incorporated 

statistician, 5(3), pp.115-146. 

 

16. Gogin, A., Gerasimov, V., Malogolovkin, A. and Kolbasov, D., 2013. African 

swine fever in the North Caucasus region and the Russian Federation in years 

2007–2012. Virus research, 173(1), pp.198-203. 

 

17. Goodman, R.A., Buehler, J.W. and Koplan, J.P., 1990. The epidemiologic field 

investigation: science and judgment in public health practice. American journal of 

epidemiology, 132(1), pp.9-16. 

 

18. Haight, F.A., 1967. Handbook of the Poisson distribution. 

 



 46 

19. Khomenko, S., Beltrán-Alcrudo, D., Rozstalnyy, A., Gogin, A., Kolbasov, D., 

Pinto, J., Lubroth, J. and Martin, V., 2013. African swine fever in the Russian 

Federation: Risk Factors. 

 

20. Han, J., Kamber, M. and Tung, K.H., 2001. Spatial Clustering Methods in Data 

Mining: A Survey. Harvey J. Miller and Jiawei Han (eds.), Geographic Data 

Mining and Knowledge Discovery. 

 

21. Huang, B., Jiang, B. and Li, H., 2001. An integration of GIS, virtual reality and the 

Internet for visualization, analysis and exploration of spatial data. International 

Journal of Geographical Information Science, 15(5), pp.439-456. 

 

22. Iglesias, I., Muñoz, M.J., Montes, F., Perez, A., Gogin, A., Kolbasov, D. and Torre, 

A., 2016. Reproductive ratio for the local spread of African swine fever in wild 

boars in the Russian Federation. Transboundary and emerging diseases, 63(6). 

 

23. Iglesias, I., Rodriguez, A., Feliziani, F., Rolesu, S. and Torre, A., 2017. Spatio‐

temporal Analysis of African Swine Fever in Sardinia (2012–2014): Trends in 

Domestic Pigs and Wild Boar. Transboundary and emerging diseases, 64(2), 

pp.656-662. 

 

24. Jeffers, J.N.R., 1973. A basic subroutine for Geary's contiguity ratio. Journal of the 

Royal Statistical Society. Series D (The Statistician), 22(4), pp.299-302. 

 

25. Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L. and 

Daszak, P., 2008. Global trends in emerging infectious 

diseases. Nature, 451(7181), pp.990-993. 

 

26. Kulldorff, M., 1997. A spatial scan statistic. Communications in Statistics-Theory 

and methods, 26(6), pp.1481-1496. 

 

27. Kulldorff, M. and Nagarwalla, N., 1995. Spatial disease clusters: detection and 

inference. Statistics in medicine, 14(8), pp.799-810. 



 47 

 

28. Knox, E.G., 1989. Detection of clusters. Methodology of enquiries into disease 

clustering. London: Small Area Health Statistics Unit, 17, p.20. 

 

29. Legendre, P., 1993. Spatial autocorrelation: trouble or new 

paradigm?. Ecology, 74(6), pp.1659-1673. 

 

30. Li, H., Calder, C.A. and Cressie, N., 2007. Beyond Moran's I: testing for spatial 

dependence based on the spatial autoregressive model. Geographical 

Analysis, 39(4), pp.357-375. 

 

31. Pending Publication Mazzucato, M., Mulatti, P., Solymosi, N., Lorenzetto, M., 

Ferrè, N., Development of a suite of tools for the management of spatial 

information related to animal infectious diseases. VetEPidGIS: an open source 

plug-in suite for QGIS 

 

32. Mengistu, T.S. and Haile, A.W., 2017. Review on the Application of Geographical 

Information Systems (GIS) in Veterinary Medicine. Int J Vet Health Sci Res, 5(4), 

pp.176-182. 

 

33. Mitchel, A., 2005. The ESRI Guide to GIS analysis, Volume 2: Spartial 

measurements and statistics. ESRI Guide to GIS analysis. 

 

34. Moran, P.A., 1950. Notes on continuous stochastic 

phenomena. Biometrika, 37(1/2), pp.17-23. 

 

35. Mooney, S.J., Westreich, D.J. and El-Sayed, A.M., 2015. Epidemiology in the era 

of big data. Epidemiology (Cambridge, Mass.), 26(3), p.390. 

 

36. Moore, D.A. and Carpenter, T.E., 1999. Spatial analytical methods and geographic 

information systems: use in health research and epidemiology. Epidemiologic 

reviews, 21(2), pp.143-161. 

 



 48 

37. Mur, L., Atzeni, M., Martínez‐López, B., Feliziani, F., Rolesu, S. and Sanchez‐

Vizcaino, J.M., 2016. Thirty‐Five‐Year Presence of African Swine Fever in 

Sardinia: History, Evolution and Risk Factors for Disease 

Maintenance. Transboundary and emerging diseases, 63(2). 

 

38. Olea-Popelka, F.J., Flynn, O., Costello, E., McGrath, G., Collins, J.D., O’keeffe, J., 

Kelton, D.F., Berke, O. and Martin, S.W., 2005. Spatial relationship between 

Mycobacterium bovis strains in cattle and badgers in four areas in 

Ireland. Preventive veterinary medicine, 71(1), pp.57-70. 

 

39. Oganesyan, A. S., O. N. Petrova, F. I. Korennoy, N. S. Bardina, and A. Gogin, 

2013: African swine fever in the Russian Federation: spatio-temporal analysis and 

epidemiological overview. Virus Res. 173, 204–211. 

 

40. OIE 1 African Swine Fever Disease Card 

URL:https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/

pdf/Disease_cards/AFRICAN_SWINE_FEVER.pdf. Accessed the 19 November 

2017 

 

41. OIE 2 Disease Information Report Archive, 

URL:https://www.oie.int/wahis_2/public/wahid.php/Diseasecontrol/measures. 

Accessed 17 November 2017. 

 

42. (OIE 3, WAHIS Interface Disease Control Measures)  

URL: https://www.oie.int/wahis_2/public/wahid.php/Diseasecontrol/measures. 

Accessed 22 November 2017.  

 

43. Perez, A.M., Ward, M.P., Torres, P. and Ritacco, V., 2002. Use of spatial statistics 

and monitoring data to identify clustering of bovine tuberculosis in 

Argentina. Preventive veterinary medicine, 56(1), pp.63-74. 

 

44. Perez, T., Gallardo, C., Nieto, R., De Mia, G., Vela, C., Bishop, R., Couacy, E., 

Martin, H., Arias, M. and Sanz, A., 2011, June. Development and preliminary 

https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/AFRICAN_SWINE_FEVER.pdf
https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/AFRICAN_SWINE_FEVER.pdf
https://www.oie.int/wahis_2/public/wahid.php/Diseasecontrol/measures
https://www.oie.int/wahis_2/public/wahid.php/Diseasecontrol/measures


 49 

validation of a pen-side test based on the use of vp72 protein for ASFV antibody 

detection. In 6th International Symposium on Emerging and Re-emerging Pig 

diseases. Barcelona, Spain 

 

45. Pfeiffer, D.U. and Stevens, K.B., 2015. Spatial and temporal epidemiological 

analysis in the Big Data era. Preventive veterinary medicine, 122(1), pp.213-220. 

 

46. Putman, R., Apollonio, M. and Andersen, R. eds., 2011. Ungulate management in 

Europe: problems and practices. Cambridge University Press, p. 410 

 

47. Robertson, C. and Nelson, T.A., 2014. An overview of spatial analysis of emerging 

infectious diseases. The Professional Geographer, 66(4), pp.579-588. 

 

48. Rodríguez-Lainz, A., Hird, D.W., Carpenter, T.E. and Read, D.H., 1996. Case-

control study of papillomatous digital dermatitis in southern California dairy 

farms. Preventive veterinary medicine, 28(2), pp.117-131. 

 

49. Sánchez-Vizcaíno, J.M., Mur, L. and Martínez-López, B., 2013. African swine 

fever (ASF): five years around Europe. Veterinary microbiology, 165(1), pp.45-50. 

 

50. Sanson, R., Pearson, A., 1997. Agribase – A National Spatial Farm Database. 

Epidemiology of Animal Health, pp. 31-32 

 

51. Simulundu, E., Lubaba, C.H., van Heerden, J., Kajihara, M., Mataa, L., Chambaro, 

H.M., Sinkala, Y., Munjita, S.M., Munang’andu, H.M., Nalubamba, K.S. and 

Samui, K., 2017. The Epidemiology of African Swine Fever in “Nonendemic” 

Regions of Zambia (1989–2015): Implications for Disease Prevention and 

Control. Viruses, 9(9), p.236. 

 

52. Singer, R.S., Case, J.T., Carpenter, T.E., Walker, R.L. and Hirsh, D.C., 1998. 

Assessment of spatial and temporal clustering of ampicillin-and tetracycline-

resistant strains of Pasteurella multocida and P haemolytica isolated from cattle in 

California. Journal of the American Veterinary Medical Association, 212(7), 

pp.1001-1005. 



 50 

 

53. Snow, J., 1855. On the mode of communication of cholera. John Churchill. 

 

54. Tobler, W.R., 1970. A computer movie simulating urban growth in the Detroit 

region. Economic geography, 46(sup1), pp.234-240. 

 

55. URISA Model, G.C.M., 2013. GIS Management Institute® GIS Capability 

Maturity Model. URL 

http://www.urisa.org/clientuploads/directory/GMI/GISCMM-Final201309  

 

56. Uttenthal, Å., Braae, U.C., Ngowi, H.A., Rasmussen, T.B., Nielsen, J. and 

Johansen, M.V., 2013. ASFV in Tanzania: Asymptomatic pigs harbor virus of 

molecular similarity to Georgia 2007. Veterinary microbiology, 165(1), pp.173-

176. 

 

57. US Department of Health and Human Services, 1990. Guidelines for investigating 

clusters of health events. Mort Morb Wkly Rep, 39, pp.1-23. 

 

58. Wang, W., Lv, Z., Li, X., Xu, W., Zhang, B., Zhu, Y. and Yan, Y., 2017. Spatial 

query based virtual reality GIS analysis platform. Neurocomputing. 

 

59. Ward, M.P., Flanagan, M., Carpenter, T.E., Hird, D.W., Thurmond, M.C., Johnson, 

S.J. and Dashorst, M.E., 1995. Infection of cattle with bluetongue viruses in 

Queensland, Australia: results of a sentinel herd study, 1990–1992. Veterinary 

microbiology, 45(1), pp.35-44. 

 

60. Ward, M.P. and Carpenter, T.E., 2000. Techniques for analysis of disease 

clustering in space and in time in veterinary epidemiology. Preventive Veterinary 

Medicine, 45(3), pp.257-284. 

 

61. WATCH, F.E., 2010. FAO takes a close look at the pig Sector in Eastern Europe to 

better understand the threats of African Swine fever.  

 



 51 

62. Vitek, J.D., Giardino, J.R. and Fitzgerald, J.W., 1996. Mapping geomorphology: A 

journey from paper maps, through computer mapping to GIS and Virtual 

Reality. Geomorphology, 16(3), pp.233-249. 

 

63. Zhang, S. and Zhao, J., 2015. Spatio-temporal epidemiology of hand, foot and 

mouth disease in Liaocheng City, North China. Experimental and therapeutic 

medicine, 9(3), pp.811-816. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 52 

Acknowledgments  

 

I’d like acknowledge the hard work and patience of Dr Norbert Solymosi as the supervisor 

of this thesis. His teaching sparked an interest in GIS and veterinary epidemiology for me 

while attending a lecture of his and I’m grateful for that.  

 

I’d also like to acknowledge the help of my parents Marie and Michae,l for their help 

proofing this paper but more importantly instilling the ambition to attend the University of 

Veterinary Medicine Budapest and providing the means to do so.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 

Appendices 

Appendix 1. Attribute Table Utilized in the Analysis of African Swine Fever. 

 

 

 

 

 



 54 

 

 

 

 

 

 

 

 



 55 

 

 

 

 

 

 

 

 



 56 

 

 

 

 

 

 

 



 57 

 

 

 

 

 

 

 



 58 

 

 

 

 

 

 



 59 

 



 60 

 


	Introduction
	Literature Review
	1. The historical use of spatial analysis with regard infectious diseases
	2. The application of GIS as an aid in infectious diseases analysis;
	3. Future application of GIS in Veterinary Epidemiology
	4. A review of relevant literature pertaining to African Swine Fever case study
	A) Distribution
	B) Diagnosis and Control Measures


	Goals/Questions
	Materials and Methods
	Results and Discussion of the Analysis of African Swine Fever in Ukraine
	Conclusions
	Summary/Abstract
	Bibliography
	Acknowledgments
	Appendices
	Appendix 1. Attribute Table Utilized in the Analysis of African Swine Fever.


