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ABSTRACT 
  
The primary objective of this literature review is to investigate contemporary research into 

canine intestinal dysbiosis and its importance in canine health today. A particular emphasis 

will be placed on the examination of metronidazole, tylosin, dietary intervention and 

probiotic therapy, with the aim of gaining enhanced insight into the current therapeutic 

approaches available to veterinary clinicians.  

 

Understanding and effectively addressing canine intestinal dysbiosis is pivotal in promoting 

the optimal functioning of the canine digestive system, and linked extraintestinal disorders. 

The studies contributing to this literature review were systematically identified using 

PubMed, an esteemed online biomedical research repository, and were supplemented with 

scholarly material sourced from the University of Veterinary Medicine, Budapest. The work 

will review and discuss well-established research findings and give a balanced, 

comprehensive overview of current investigations in this field. Twenty studies were 

examined in their entirety, focusing on contemporary therapeutic approaches to various 

forms of intestinal dysbiosis. 

 

This literature review found that modulations in the intestinal microbiome have been firmly 

established as being interconnected with general systemic health in dogs. Acquiring 

additional knowledge regarding this subject is of paramount importance to enhance the 

efficiency of applied clinical interventions in veterinary settings. Recent publications in the 

field have showcased significant advances in the understanding of shortcomings of 

commonly prescribed antibiotic therapies, whilst also highlighting a notable lack of 

consistency and coherence across research endeavours. Conversely, research discussed in 

this paper fortified the potential behind some dietary and probiotic interventions, indicating 

a promising outlook for futured studies into intestinal dysbiosis treatments. These statements 

are not intended to diminish any ongoing research efforts, rather their purpose is to 

underscore the inherent breadth of intestinal dysbiosis, and the intricate nature of approaching 
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this extremely complex issue. These findings emphasize the massive importance of 

additional research initiatives. 

  

LITERATURE REVIEW 
  
GUT MICROBIOME 
 

GENERAL INTRODUCTION 
  
Dogs have historically been labelled as a cherished companion of humans, hence earning the 

esteemed title of ‘man’s best friend’. With this special bond, arises the duty of safeguarding 

their well-being and a responsibility of ensuring optimal health and welfare. Recent research 

has demonstrated a growing imperative to understand gut microbial health and its 

consequential impacts (Alessandri et al., 2020 [2]; de Vos et al., 2022 [39]). Advancements 

in modern technology are facilitating a more comprehensive analysis of the constitution, 

diversity and detailed metabolic function of intestinal communities (Arnold et al., 2016 [11]; 

Kwa et al., 2023 [84]). Research in dogs has unveiled correlation between dysbiosis and: 

obesity (Ley et al., 2006 [92]; Kieler et al., 2017 [80]; Bermudez Sanchez et al., 2020 [21]), 

metabolic dysfunction (Montoya-Alonso et al., 2017 [109]; Jergens et al., 2019 [74]), cancer 

(Wu et al., 2009 [163]; Zitvogel et al., 2017 [166]; Pilla & Suchodolski, 2021 [121]) and 

even neurological issues (Wu et al., 2017 [162]; Gernone et al., 2022 [54]). This aids in 

proving that consequences of dysbiosis are not limited to being an intestinal tract issue. This 

paper aims to dissect previous ‘gold standard therapies’ and discuss recent dysbiosis research 

findings, with aim of gaining insight into obtaining optimal canine gut health. 
 

CANINE GUT MICROBIOME 

  
The microbiome describes the total population and genome collection complex of bacteria, 

archaea, protozoa, viruses and fungi found on and within a mammal’s body (Pilla & 

Suchodolski, 2021 [121]). A product of approximately 500 million years of co-evolution 
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(Ley et al., 2008 [90]; Ley et al., 2008 [91]), the gut microbiome encompasses a diverse 

consortium of gastrointestinal microorganisms and their genomes, co-existing symbiotically 

in the GI tract (Hooper, 2001 [68]; Stecher & Hardt, 2008 [157]).  This gastrointestinal 

microbiome assemblage vitally contributes to maintaining the health of the host organism. 

Extensive studies conducted on numerous mammalian species including human beings, have 

demonstrated the importance of the microbiome: in supporting homeostasis, metabolism, 

competitive exclusion of potentially pathogenic organisms, epithelial physiological 

maintenance, neuro-behavioural development and immunological function (Batt et al., 1996 

[16]; Barko et al., 2018 [15]). Microbial genetics amassed within the biome, endow the host 

organism with an even greater metabolic repertoire than its own genome could provide, 

thereby supplying vital complimentary functions that are essential to host digestion (Barko 

et al., 2018 [15]; Goodrich et al., 2017 [55]). The microbiome is dynamic and therefore 

subject to a variety of factors including diet (Leverett et al., 2022 [89]), environment, stress 

(Pilla & Suchodolski, 2020 [120]), disease, medical intervention, dysbiosis and many 

different metabolic diseases (Pilla & Suchodolski, 2021 [121]).  

  

In healthy dogs, the bacterial population within the gastrointestinal system typically spans 

between 1012 - 1014 cfu/g, a numerical magnitude approximately tenfold greater than that of 

the host cells (Suchodolski, 2011 [147]; Suchodolski, 2011 [148]). This ratio underscores the 

immense magnitude and physical presence of the gut microflora and their amassed genomes. 

This substantial statistic highlights the need for additional research in this field.  

 

CANINE GUT MICROBIOTA 
 

In comparison to the broader concept of the microbiome, the term microbiota specifically 

embodies all the distinct microorganisms that interact with a host in a particular environment 

(Grice & Segre, 2011 [56]). The composition of the gut biome exhibits remarkable diversity; 

consisting predominantly of bacteria, archaea and viruses. Among these components, 

bacteria, in particular (Suchodolski, 2011 [137]), play a significant role in essential digestive 

functions like fibre fermentation, pathogen protection and immune feedback for the host. 
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Ongoing research of microbiome functionality has uncovered important gut-link connections 

like the ‘gut-brain axis’ and gut-skin axis’ (O’Mahony et al., 2015; O’Neill et al., 2016 [113]; 

Lee at al., 2018 [87]; Gernone et al., 2022 [54])  

  

The predominant bacterial phyla found in the canine GI tract are Firmicutes and 

Bacteroidetes (Hoffmann et al., 2016 [64]). Other common phyla include: Proteobacteria, 

Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, Verrucomicrobia, Cyanobacteria 

and Chloroflexi. Within the firmicutes phylum, distinct bacterial groups like clostridia are 

identified. Clostridial clusters XIVa and IV are responsible for producing short chain fatty 

acids (SCFA). SCFA serve as an energy source once catabolized and are utilized by bacteria 

in the gut. They are believed to enhance barrier function, intestinal motility and reduce 

intestinal inflammation (Machiels et al., 2014 [98]). Bacteria convert fibre, protein, fat and 

bile acids into metabolites that can be more efficiently utilized by the intestine and other 

organs. SCFA, Indoles and secondary BA, are notable metabolites formed through 

microfloral processes (Bansal et al., 2010 [14]; Duboc et al., 2013 [44]; Pavlidis et al., 2015 

[116]; Waclawikova & El Aidy, 2018 [168]; Minamoto et al., 2019 [105]). 
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Comparison of healthy and diseased intestinal microflora (Fig. 1: Adapted from: Hoffmann et al., 2016 [64]) 

 
  

Microbial populations along the GI tract exhibit variation. This is relative to the distinct 

microenvironment and functional role that is inherent to each intestinal segment. Bacterial 

data for the colon showed a broader range of 109-1011 cfu/g, indicating a more diverse range 

of flora compared to the small intestine (Suchodolski, 2011 [147]). Notably, the small 

intestine accommodates a blend of aerobic and facultative anaerobic bacteria, whereas the 

colon is mainly colonized by anaerobes (Pilla & Suchodolski, 2020[120]). 

  

Through sequence analysis of 16 S rRNA (Pace, 1997 [114]), the intricate ecosystem within 

canine organisms has been unveiled, revealing the existence of at least 200 small-intestinal 

phylotypes and up to 1000 large-intestinal microorganism phylotypes (Handl et al., 2011 

[58]; Handl et al., 2013 [59]) These findings have demonstrated some parallels to feline and 

human microbe tracts, and these complex intestinal microbes exert significant impact on both 

health and disease. 
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MICROBIOME ANALYSIS METHODS 

Scientific interest in the microbiome can be traced back to the historic statement by Antonie 

van Leeuwenhoek [1632-1723] “I then most always saw, with great wonder, that in the said 

matter there were many very little living animalcules, very prettily a-moving.” (Institute of 

Medicine, 2013 [71]). Records indicate that as early as 1977, scientists were cultivating the 

gastrointestinal tract in beagles, to make further microscopic deduction (Huang et al., 2020 

[69]). However, the isolation of specific bacterial species in large quantities was very 

challenging, until PCR analysis methods were developed. Beneficial gut bacteria are 

predominantly anaerobic, therefore rendering traditional culturing methods ineffective in 

comprehensively assessing the full complexity of all bacteria in given sample (Costa & 

Weese, 2019 [31]). Bacterial culture is typically diagnostic only with relevant clinical signs 

such as: depression, apathy, visceral/parietal pain, dysentery, melena or an inflammatory 

leukogram (Marks et al., 2011 [102]; Werner et al., 2020 [173]; Becher et al., 2021 [17]). 

Although cultures are commonly taken from symptomatic dogs, diagnostic yield is low and 

false positives occur frequently. (Marks et al., 2011 [102]). More methods include gram 

staining of anaerobic bacteria, gas chromatography for fermentation-formed FA (Lin et al., 

2022 [95]; Mackei et al., 2022 [99]) and other biochemical tests (Forster et al., 2018 [48]). 

In 1993, the Denaturing Gradient Gel Electrophoresis (DGGE) technique was initially 

employed. DGGE serves as a tool to examine genetic variation within intricate microbial 

communities, including environmental or faecal samples (Muyzer et al., 1993 [110]). 

Through utilizing PCR-DGGE molecular fingerprinting, various faecal diversity levels can 

be found (Muyzer & Smalla, 1998 [111]). Technical biases associated with this technique 

are possible, and potentially can arise from such factors as template annealing during the 

amplification process (Suzuki & Giovannoni, 1996 [156]). Also of note, is that each single 

DGGE band does not necessarily represent a single bacterial strain, and so can be misleading 

(Sipos et al., 2007 [144]). 

Another method of analysing bacterial community profiles is through percent G + C profiling 

(Apajalahti et al., 2001 [10]). This technique analyses the composition of bacterial 
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communities based on the relative abundance of guanine (G) and cytosine (C) DNA 

nucleotides. G+C content varies among different bacterial species, hence analysing these 

profiles allows researchers to identify and classify bacteria present. By applying percent G+C 

profiling to canine microbiome research, scientists gain a better understanding of the 

diversity and composition of the gut. However, this technique tends to hold bias for high 

G+C-containing strains (Suchodolski, 2011 [147]) so could perhaps be better used in 

combination with DGGE. Using the modified GC-DGGE technique improves diversity and 

minority microbiome assessment within faecal samples (Holben et al., 2004 [65]). 

Microbial culture, while useful for culturable bacteria, has been largely replaced by 

molecular methods, due to their ability to capture non-culturable bacteria (Suchodolski, 2011 

[147]; Suchodolski, 2011 [148]). 16S rRNA gene sequencing and shot-gun sequencing are 

molecular methods that identify species diversity in a presented sample. These methods 

involve fragment amplification and sequencing in the 16S rRNA conserved gene region, or 

work through sequencing all the available sample DNA. Costly shotgun sequencing holds 

the benefit of precisely coding functional genes, not just identifying the bacteria type. qPCR 

is a reliable quick, and cost-effective means of quantifying taxa that are of medical interest 

(Pilla & Suchodolski, 2021 [121]).  

  

One prevailing limitation in many microbiome studies is the common practice of comparing 

a control group or baseline to various environmental factors like geography, diet, specific 

breeds and sample storage (Pilla & Suchodolski, 2021 [121]) Particularly when this occurs 

in a small size study, it becomes difficult to ascertain the complete extent of a single, specific 

variable. 

  

CORE CANINE MICROBIOTA 
  

The gut microbiome comprises bacteria, archaea, viruses, and eukaryotic organisms, all 

residing in the gastrointestinal (GI) tract (Thomas et al., 2022 [161]). The largest component 

within the microbiome is the bacteria, fulfilling a vital role in digestive processes, notably 

the fermentation of fibres (Swanson et al., 2011 [158]). Moreover, the gut microbiome lends 
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to host metabolism, immune system regulation and protection against pathogens (Pilla & 

Suchodolski, 2021 [121]). Advances in understanding microbiome functions have uncovered 

various connections the gut microbiome holds outside of the gastrointestinal tract. These have 

led to the coinage of terms such as the gut-brain axis, gut-skin axis, and so on (Lee et al., 

2018 [87]; Pilla & Suchodolski, 2021 [121]; Gernone et al., 2022 [54]). 

 

INTESTINAL DYSBIOSIS 
  

Intestinal dysbiosis, characterized by an imbalance in the gut microbial community, is a 

prevalent condition that affects dogs of all breeds and ages. Various factors including dietary 

and medical interventions can disturb the delicate equilibrium between beneficial and 

harmful, leading to gastrointestinal distress and associated health combinations (Hooda et al., 

2012 [67]). Numerous diseases, whether manifested systemically or in localized regions, 

have been correlated with dysbiosis (Pilla & Suchodolski, 2020 [120]). In essence, intestinal 

dysbiosis concerns alterations in the composition of the gut microbiome, that affect its 

function. (Zeng et al., 2017 [161]). Dysbiosis involves a shift in bacterial abundance or a 

reduction in species diversity, which in the case of the intestinal form, results in a metabolite 

dysmetabolism (Minamoto et al., 2019 [105]; Blake et al., 2019 [24]). It is important to 

emphasize, that owing to such colossal numbers of intestinal bacteria, a shift in bacterial 

populations is incredibly difficult to directly induce. Consequently, dysbiosis frequently 

assumes a chronic nature, involving physiological mucosal alterations (Ziese & Suchodolski, 

2021 [162]). The increase in abundance of facultative anaerobic bacteria of the family 

Enterobacteriaceae is a hallmark of dysbiosis across multiple species, including dogs 

(Vazquez-Baeza et al., 2016 [165]; Rivera-Chavez et al., 2017 [129]).  

  

Metronidazole and tylosin, both commonly prescribed antibiotics, have been widely used as 

a therapy for canine dysbiosis in the veterinary field. Both carry broad spectrums of action 

targeting gram – and +, anaerobic bacteria and some protozoal species. However, recent 

research has identified that these previously common therapies, may not be as efficient as 

hoped (Shmalberg et al., 2019 [142]; Langlois et al., 2020 [85]). 
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DYSBIOSIS INDEX 
  

A commercially available PCR-based assay tool which assess individual canine and feline 

GI microbiome, with a 74% sensitivity and 95% specificity (AlShawaqfeh et al., 2017 [8]; 

Sung et al, 2022 [155]). DI is a method for evaluating GI microbiota providing an insight to 

intestinal disease, but also a method of evaluating treatment response. Currently it is the only 

analytically validated PCR assay available and has been employed in many published clinical 

studies, in both dogs and cats (Giaretta et al., 2018 [52]; Guard et al., 2019 [51]; Pilla et al., 

2020 [118]; Sung et al., 2022 [155]). As previously discussed, there are thousands of canine 

GI microbiota, but DI focuses on quantifying the faecal abundance of seven bacterial taxa: 

Faecalibacterium, Turicibacter, Blautia, Fusobacterium, Bifidobacterium, Bacteroides, 

Clostridium hiranonis, Streptococcus and E. coli. Immunochemistry or in situ hybridization 

evaluates and identifies intracellular and muco-adherent bacteria in animals with GI disease 

(Suchodolski, 2021 [149]). Clear reference intervals are set for dogs where deviations have 

been linked to dogs with gastrointestinal disease. 
 

Dysbiosis Index reference intervals for dogs (Fig. 2: Adapted from: Texas A&M University, 2023 [160]) 

  Function normal in Dogs 
Change in 
 dysbiosis 

Faecalibacterium anti-inflammatory, production of SCFA 3.4 – 8.0 ↓ 

Turicibacter production of SCFA 4.6 – 8.1 ↓ 

Blautia production of SCFA 9.5 – 11.0 ↓ 

Fusobacterium production of SCFA 7.0 – 10.3 ↓ 

Bifidobacterium production of SCFA not measured ↓ 

Bacteroides production of SCFA not measured ↓ 

Clostridium 
hiranonis 

conversion of primary to secondary bile acids 5.1 – 7.1 ↓ 

Streptococcus overgrowth associated with dysbiosis 1.9 – 8.0 ↑ 

E. coli pro-inflammatory 0.9 – 8.0 ↑ 
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By evaluating the richness of the bile acid transforming bacterium Clostridium hiranonis, the 

intestinal microbiota’s ability to transform primary to secondary BA is also evaluated by the 

DI. Secondary BA when in adequate numbers, play an antimicrobial role and suppress 

possible enteropathogens, such as C. difficile (Weingarden et al., 2014), C. perfringens 

(Blake et al., 2020 [23]), and E. coli. Consequently, a reduction of C. hiranonis and a 

decreased conjugation of primary BA strongly supports a faecal dysbiosis diagnosis. An 

elevated DI coupled with a decreased abundance of C. hiranonis, are commonly seen markers 

in many intestinal and extraintestinal disorders. 

 
Extraintestinal disorders that can lead to GI clinical symptoms (Fig. 3: Adapted from the lecture notes of 
Dr. K. Pápa, 2023) 

 
 

 

 

 

 

 

 

 

 

 

 
 

The qPCR method behind DI, uses the closest centroid classifier to calculate a single 

numerical value in relation to the mean prototype of each bacterial class. Therefore, a 

negative DI value suggests normobiosis; and conversely a positive DI value implies dysbiosis 

and a lack of bacterial richness in a sampled host (AlShawaqfeh et al., 2017 [8]). Really high 

DI, above 2 in dogs, can indicate marked intestinal mucosal deterioration and refractory GI 

disease (AlShawaqfeh et al., 2017 [8]; Mishima & Sartor, 2020 [108]; Suchodolski, 2023 
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[151]). Toxin detection is applicable for some bacteria such as Clostridium or pathogenic E. 

coli. 

  

DYSBIOSIS IN DIFFERENT DISEASES 
  

ENTEROPATHIES & INTESTINAL DISEASE 
  

Chronic enteropathy (CE) in dogs describes a group of non-specific diseases, characterized 

by gastrointestinal signs that involve chronic inflammation of the GI tract, and consequential 

GI signs that persist for atleast 3 weeks (Simpson & Jergen, 2011 [143]; Dandrieux, 2016 

[33]; Hall & Day, 2017 [57]). The pathogenesis of canine CE is characterized by numerous 

contributing factors, with the foremost being a disruption in typically diet—related antigen 

tolerance or the intricate microbiome balance. These factors result in an aggressive cell-

mediated immune response (Allenspach & Mochel, 2021 [5]). Due to its complicated nature, 

diagnosing CE necessitates ruling out other diseases that may present similarly, such as: 

bacterial infection, endoparasites, EPI, atypical hypoadrenocorticism and GI neoplasias 

(Berghoff & Steiner, 2011 [20]; Simpson & Jergens, 2011 [143]; Allenspach et al., 2016 [4]; 

Dandrieux , 2016 [33]). Common clinical signs include abdominal pain, chronic 

intermittent/persistent diarrhea, vomiting, cachexia, anorexia, borborygmus and nausea 

(Schmitz et al., 2015 [139]; Procoli, 2020 [123]). 

   

Further classification of CE is possible, listed here in order of high occurrence: Food-

Responsive Enteropathy (FRE), Immunosuppressant Responsive Enteropathy (IRE) 

Idiopathic Intestinal Dysbiosis (IID) and Non-Responsive Enteropathy (NRE) (Jergens & 

Heilmann, 2022 [75]). Previously IID was known as Antibiotic Responsive Enteropathy 

(ARE). Often further classification of CE is retrospective to treatment trial response e.g. dogs 

with symptom improvement on elimination diets are categorized as FRE. Upto 2/3 of CE 

presenting cases are connected to a FRE (Craven et al., 2004 [32]; Allenspach et al., 2007 

[7]) although more recent research, involving the new disease categorization is warranted. 

Cases requiring corticosteroids for patient improvement are labelled as IRE, of which 
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sometimes can be termed Inflammatory Bowel Disease (IBD) (Jergens & Heilmann, 2022 

[75]) NRE embodies the smallest proportion of CE cases, where multiple therapies have been 

applied with no notable response. An NRE diagnosis carries a poorer long-term prognosis 

and has been correlated with a high euthanasia rate (Craven et al., 2004 [32]; Allenspach et 

al., 2007 [7]). The legitimacy of true ARE has been subject to debate (Erdmann & Heilmann, 

2017 [47]; Dandrieux & Mansfield, 2019 [34]; Cerquetella et al., 2020 [27]) 

  
Enteropathy Pyramid (Fig. 4: Adapted according to Jergens & Heilmann (2022 [75]) & Dr. K. Pápa lecture 
notes (2023)) 

 

Clinical, pathological, endoscopic and histologic characteristics can resemble one another in 

dogs experiencing different types of CE. Definitive diagnosis of CE necessitates histologic 

evaluation of endoscopic or surgically obtained intestinal tissue biopsies (Elwood, 2005 [46]; 

Jergens et al., 2016 [77]). Immunohistochemical or other molecular tests may also be 

employed. The current consensus regarding the diagnostic CE algorithm in dogs, involves 

conducting elimination dietary trials ahead of more invasive testing methods (Jergens & 

Heilmann, 2022 [75]). Thus, dogs exhibiting complete and durable response to a vet-

mediated elimination diet, may be classified as FRE, and not require further diagnostics 

(Holmberg et al., 2022 [66]). There are only a few secondary biomarkers, such as serum 
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cobalamin, albumin and faecal calprotectin, that hold clinical utility in CE presenting cases, 

and these need to be further confirmed based on various treatment response (Heilmann et al., 

2018) [61]. Faecal calprotectin concentrations can be suggestive of IRE (Heilmann et al., 

2012 [62]) 

 

Dysbiosis will always develop with chronic enteropathy. The immune system, genetics, food 

intolerance, intestinal dysbiosis and wall integrity are all suspected in the aetiology of CE 

(Allenspach, 2011 [3]; de Souza & Fiocchi, 2016 [38]). A breed link has been established: 

German Shepard (Chronic inflammatory enteropathy, EPI), Yorkshire terrier 

(Lymphangiectasia), Retrievers (Food responsive enteropathy, FRE), Border collies 

(Chronic Inflammatory Enteropathy), Boxer/French bulldog (Granulomatous 

Colitis/Histiocytic Ulcerative Colitis HUC). 

  

Acute haemorrhagic diarrhoea syndrome AHDS is caused by Cl. perfringens overgrowth. 

Bacterial overgrowth: Campylobacteriosis, salmonellosis, coronaviral enteritis, pantropic 

coronaviral enteritis or miscellaneous bacterial enteritis. Young dogs in stressful 

environments often with concurrent disorders. Immunocompromised animals or dogs fed 

with raw meat diets are more prone to developing this condition and have a significant carrier 

state. 

  

IATROGENIC DYSBIOSIS 
  
Intestinal dysbiosis may be diagnosed through various clinical assessments and scoring 

systems and validated clinical scoring systems. These diagnostic tools serve not only to 

initiate appropriate treatment but also to identify the associated clinical consequences of 

intestinal dysbiosis. 
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CIBDAI 

  

Canine Inflammatory Bowel Disease Activity Index (Jergens et al., 2003 [76]) is a systematic 

scoring assessment tool that was developed to help evaluate dogs suffering with IBD, which 

can further be validated through objective laboratory and histology indices that are suggestive 

intestinal inflammation. Through a 0-3 scoring system, individualized assessment is possible, 

depending on normal (0) to severe (3) salient clinical presentations of: activity, appetite, 

vomiting, stool consistency, stool frequency and observed weight loss. Hypoalbuminemia, 

hypocobalaminemia, hypovitaminosis D, duodenal lesions and an elevated CIBDAI score 

are all acknowledged as adverse prognostic indicators for canine CE (Jergens et al., 2003 

[76]; Allenspach et al., 2007 [7]; Allenspach et al., 2017 [6]). 

  

CCEAI 
  

The Canine Chronic Enteropathy Activity Index scoring system is a more contemporary, 

validated approach for assessing the severity of dogs presenting with chronic enteropathy. 

Utilizing factors identified by logistic regression and ROC curve analysis, a clinical scoring 

index (CCEAI) was formulated to forecast adverse outcome in dogs suffering from chronic 

enteropathies (Allenspach et al., 2007 [7]). Severe disease is suggested at scores greater than 

12/27. Hypocobalaminaemia, hypoalbuminaemia, hypovitaminosis D and an elevated CRP 

are also considered poor prognostic markers (Benvenuti et al., 2021 [19])  
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Comparison of clinical indices CIBDAI and CCEAI (Fig. 5: Adapted from Allenspach et 
al., 2007 [7]) 
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TREATMENTS: EFFECT & INFLUENCE ON THE INTESTINAL 
MICROBIOME 
 

METRONIDAZOLE 
 

Metronidazole, a bactericidal antibiotic of the nitroimidazole family, has been frequently 

prescribed in both human and veterinary medicine since the 1960s (Li & Corey, 2013 [94]). 

Despite over 60 years of research, the precise metronidazole metabolism and its associated 

cytotoxicity have yet to be definitively elucidated (Dingsdag & Hunter, 2018 [41]). 

Additionally, the post-treatment recovery of the microbiome, and the metabolic consequence 

have not been sufficiently investigated thus far (Pilla et al., 2020 [118]). 

Nitroimidazoles, such as metronidazole, function as prodrugs that undergo activation through 

the reduction of the nitro-group. Research has demonstrated that it is the nitro-group that is 

responsible for the cytotoxicity (O’Brien & Morris, 1971 [112]; Ehlhardt et al., 1987 [45]). 

Around 45-70% of canine diarrhoea cases, are estimated to be treated with an antimicrobial 

prescription (German et al., 2010 [53]; Jones et al., 2014 [79]; Anholt et al., 2014 [9]; Radford 

et al., 2011 [125]; Singleton et al., 2017 [141]).  Up until very recently, Metronidazole was 

commonly employed as a standard treatment in inflammatory infections of the GI tract, 

particularly in cases of: Acute Diarrhoea, colitis, giardia, C. perfringens (Singleton et al., 

2019 [140]). 

  

Recently, broad-spectrum antibiotics such as tylosin or metronidazole have been proven to 

reduce C. hiranonis and cause a subsequent decrease in secondary BA conversion. This 

directly causes a proportional increase in primary BA which has been linked to long-lasting 

subclinical dysbiosis in some dogs (Pilla et al., 2020 [118]; Chaitman et al., 2020 [28]; 

Manchester et al., 2019 [100]) (Fig. 6: Pilla et al., 2020 [118]; Ziese & Suchodolski, 2021 

[161]). Fig.6 visually demonstrates how treatment with metronidazole can lead to an 

increased dysbiosis index, and the affected correlation of C. hiranonis numbers in the gut. 
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Metronidazole & Dysbiosis Correlation (Fig. 6: “Impact of Changes in Gastrointestinal 

Microbiota in Canine and Feline Digestive Diseases”, Ziese & Suchodolski (2021 [161]) 

which was adapted from “Effects of metronidazole on the fecal microbiome and metabolome 

in healthy dogs” Pilla et al., 2020 [118]) 
  

 
  

Up until recent studies highlighted treatment detriments, metronidazole was the most 

commonly prescribed treatment for dogs suffering with acute diarrhoea, often associated with 

a suspected Giardia or C. perfringens infection (Singleton et al., 2019 [140]). C. perfringens 

is suspected of being the causative agent behind acute haemorrhagic diarrhoea syndrome in 

dogs, due to the strong netF toxin gene association (Leipig-Rudolph et al., 2018 [88]). 

However, a clinical trial has demonstrated no clear benefit of antimicrobial treatment in these 

cases, although metronidazole itself was not examined (Unterer et al., 2011 [164]). The study 

further stressed that as well as no demonstrated requirement for antimicrobial treatment of 

haemorrhagic diarrhoea in dogs, that continued unsubstantiated use of antibiotics is 

promoting their resistance, and unnecessary adverse drug reactions. 

Similarly to acute course treatments, metronidazole is frequently administered to dogs with 

chronic diarrhoea upon failure to respond to dietary changes (Jergens et al., 2010 [73]; Rossi 

et al., 2014 [132]). Due to concerns of antimicrobials inducing dysbiosis in dogs with an 

existing deranged microbiome, alternative management via probiotics and synbiotics have 
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been projected (Rossi et al., 2014 [132]; White et al., 2017 [176]; Pilla et al., 2019 [119]). 

Additionally, it is difficult to ascertain if metronidazole administration alone affects 

microbiome composition or if dietary changes such as hydrolysed protein-based diets 

contribute too. Most cats and dogs with gastrointestinal (GI) disease suffer from concurrent 

intestinal dysbiosis (Alshawaqfeh et al., 2017 [8]; Marsillo et al., 2019 [103]). Dysbiosis 

patterns typically differ between acute and chronic diseases, however certain similarities 

persist across all conditions. The causative nature of dysbiosis remains unclear in most cases, 

with uncertainty as to whether the dysbiosis caused is a primary issue or a secondary effect 

of an underlying disease process (Ziese & Suchodolski, 2021 [161]). Furthermore, how much 

dysbiosis contributes to the extent and progression of a disease, remains uncertain in these 

induced secondary cases.  Clinical manifestations resulting from dysbiosis are also likely 

influenced by the exact localization and degree of microbial change, therefore a massive 

variability in physical symptoms can be exhibited (Jalanka-Tuovinen et al., 2011 [72]). 

Limited information exists regarding the impact of antimicrobial-induced dysbiosis on the 

serum and faecal metabolome, especially in dogs. Hence there is a need for more 

comprehensive research studies into microbiome and their functional-metabolite alterations. 

Pilla et al. (2020 [118]), explored the of a 14-day course of metronidazole, alone, or in 

conjunction with a hydrolysed protein diet. impact on faecal microbiota, microbolome and 

BA concentration. 3 groups were involved: group 1 acted as a control, group 2 received a 

hydrolysed protein diet in conjunction with metronidazole therapy, and group 3 received 

metronidazole alone. The evaluation of microbiome composition involved 16S rRNA gene 

sequencing and a qPCR-based dysbiosis index. Additionally, untargeted metabolomic 

analysis was conducted on faecal and serum samples, followed by targeted assays for faecal 

BA and lactate. Results for group 1 and 2 were mostly insignificant, however the application 

of metronidazole in group 3 displayed a notable alteration in microbiome composition, 

encompassing a reduced richness of microflora. These changes of the microbiota were found 

to persist 4 weeks past discontinuation of the antibiotic. Metronidazole administration in this 

present study, also demonstrated an increased abundance of Streptococcus and E. coli in 

samples. In correlation, the faecal dysbiosis index demonstrated a significant increase, along 
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with an increase in total faecal lactate levels. Results also demonstrated a shift towards 

primary BA, with a notable decrease in secondary deoxycholic and lithocholic acid. This 

study revealed Metronidazole held a minimum disruptive effect on faecal microbiota of a at 

least 4 weeks, further studies into the exact time-frame of effect and negative implications 

are justified. 

Rudinsky et al. (2022 [133]) performed a 30-day dietary trial, involving 59 privately owned 

dogs diagnosed with non-infectious acute colitis. Experimentally, the goal was to examine 

the effects of dietary changes with or without metronidazole, through a randomized 

controlled clinical trial. The dogs were randomly assigned to 3 placebo-controlled groups, 

and all groups received an easily digestible diet for the duration of the trial. On top of this, 

Group 1 received a placebo tablet, Group 2 a metronidazole tablet, and group 3 received 

psyllium additions to their diet. The progress of the animals was then monitored through 

faecal scoring, remission time and the dysbiosis index. Median remission times across the 

groups were statistically different; with the metronidazole prescribed group displaying the 

longest time of 8.5 days. In addition to the remission times, metronidazole negatively 

influenced the faecal dysbiosis index during days 7 to 10. There is a need for more 

longitudinal clinical trials, in order to discern the comparative long-term responses, Stability 

and complications of metronidazole treatment for acute colitis in dogs. 

  

An earlier study conducted by Igarashi et al. (2014 [70]) has also contributed to the enhanced 

understanding of the effects of metronidazole therapy on gastrointestinal microbiota. The 

study specifically examined the comparative impact of 14-day treatment of healthy dogs with 

either metronidazole or prednisolone. Both metronidazole and prednisolone are frequently 

prescribed treatments for dogs afflicted with various gastrointestinal disorders, including 

acute diarrhoea and chronic enteropathy. The study ran a duration of 42 days, and 

encompassed a cohort of 10 healthy beagle subjects, evenly divided into two groups: one 

receiving metronidazole treatment and one receiving prednisolone. Variations in age, gender 

and neutering status were present, but all dogs were housed separately in the same laboratory 

unit, fed identical diet and demonstrated no signs of gastrointestinal abnormalities as 
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determined by haematology, faecal examination and ultrasound techniques. Throughout the 

study, faecal samples were collected from each dog on day 0, 14 and 42. These samples were 

analysed through 16S rRNA gene sequencing. This approach facilitated comprehensive 

characterization of faecal microbial alterations over the course of the study period. Overall, 

the data suggests that metronidazole induced changes in faecal bacterial composition, leading 

to a reduction in bacterial diversity. Conversely, prednisolone was found to exhibit no similar 

effect. It is noteworthy that the impact of metronidazole in this study was found to be 

temporary in nature, diminishing in the 4-week span following the discontinuation of the 

drug. The results were valuable, but a more extensive sample size and perhaps an increase in 

breed representation and gastrointestinal disease incidence would have elicited scholarly 

curiosity. Also, the alterations in faecal bacterial groups could not necessarily be linked to 

clinical outcomes. Consequently, forthcoming research should employ canine study 

populations afflicted with chronic enteropathy. 

  

As elucidated earlier, canine dysbiotic disruptions can lead to a myriad of subsequent health 

implications for dogs. However, following study, proposes the converse to also be true., 

further highlighting the importance of managing canine gut health. Metronidazole, a 

medication often employed in the treatment of dogs diagnosed with CPSS, is currently under 

consideration for its potential to induce an intestinal microbial imbalance. In a recent 

investigation (Squire et al., 2022 [145]), attempts were made to establish a correlation 

between the faecal microbiome and dogs under medical management for a definitive CPSS 

diagnosis. Given metronidazole is often used to help mitigate the secondary clinical 

manifestations arising from CPSS, it is vital to recognize any impact of these antimicrobials 

on overall dysbiosis. Consideration and assessment of these interactions is vital in building a 

deeper understanding of therapeutic outcomes for these patients. This prospective cohort 

study enrolled 27 client-owned dogs in taking faecal samples and collecting follow-up data. 

The study assessed the faecal DI and the abundance of individual bacterial species using real-

time qPCR. Alongside these assessments, data related to medical management, client 

reactions, clinical parameters and outcomes were compiled. Logistic regression analysis was 

employed in examining the potential association between all the collected data.  Surprisingly, 
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no significant association was found between the dogs receiving metronidazole and their DI 

values. However, even in the absence of a discernible correlation with the DI, this study 

found a notable connection between metronidazole administration and an increased 

abundance of E. coli. This particular finding aligns with a previously mentioned 

metronidazole trial, undertaken by Pilla et al. (2020 [118]) involving healthy canine subjects. 

 

TYLOSIN 
  

Tylosin, is a solely veterinary registered antibiotic, that takes bacteriostatic action in mostly 

anaerobic gram + bacteria, some gram – bacteria and mycoplasma spp. (Stone et al., 2009 

[146]; Liu & Douthwaite, 2002 [96]). This macrolide classed antibiotic binds to the 50S 

subunit of the bacterial ribosome, preventing protein synthesis by preventing polypeptide 

chains from forming, hence eliciting an antibacterial effect (Arsic et al., 2017 [12]). 

Additionally, tylosin has been postulated to reduce inflammation through affecting the 

synthesis of multiple inflammatory mediators and cytokines (Cao et al., 2006 [26]). 

Therapeutically, it has good effect on relevant gastrointestinal pathogens such as Cl. 

perfringens and Campylobacter spp, which are both implicated in the etiopathogenesis of 

chronic and intermittent diarrhoea in dogs (Marks & Kather, 2003 [101]). Furthermore, 

tylosin is commonly employed to address such conditions as SIBO or chronic enteropathy 

(Suchodolski & Steiner, 2003 [154]). It has been a widely recommended treatment for 

chronic enteropathies in dogs but remains unclear if therapeutic dosages solely target 

intestinal pathogens or also induce changes to general intestinal flora in dogs with diarrhoea 

(Suchodolski et al., 2009 [153]; Pinna et al., 2020 [122]). The exact mechanism behind the 

improvement of faecal consistency remains uncertain, however it is believed to be associated 

with modulation of intestinal microbiota (Manchester et al., 2019 [100]). Previously, 

researchers hypothesized that dogs with tylosin-responding diarrhoea may share a common 

tylosin-susceptible enteropathogen (Westermarck et al., 2005 [175]; Kilpinen et al., 2011 

[81]). Nonetheless, this has not been validated through empirical evidence. Alternative 

theories regarding the mode of action behind tylosin effect, encompass the promotion of 

beneficial commensal bacteria, a reduction in small intestinal bacteria load, and perhaps the 
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inhibition of various mucosal immune responses (Menozzi et al., 2005 [104]; Cao et al., 2006 

[26]). The following studies will discuss tylosin use and its scientifically deducted microbial 

effects. 

  

The application of tylosin does not offer a definitive resolution of ARE, as diarrhoea 

frequently returns post discontinuing the therapy (Kilpinen et al., 2014 [82]). As a result, a 

considerable number of dogs necessitate lifelong treatment to achieve disease control 

(Westermarck et al., 2005 [175]). Among antibiotic solutions, there is a consensus that tylosin 

is a highly effective therapeutic choice. In light of this, the term ‘tylosin-responsive 

diarrhoea’ has been coined to underscore the drug’s efficiency in managing dogs afflicted by 

IID (Westermarck et al., 2005 [175]). This is why research in this area is crucial, as better 

understanding of why certain dogs improve with tylosin may help towards more lasting 

treatments. 

  

Marclay et al. (2022) conducted a randomized, placebo-controlled study explore the impact 

of tylosin therapy on 16 healthy dogs with or without faecal microbial transplantation (FMT), 

on the recovery of the faecal microbiome. Antibiotics are known to cause gut dysbiosis and 

deregulate bile acid bio-transformative reactions in dogs, despite tylosin being frequently 

utilized as a treatment for digestive issues and imbued intestinal dysbiosis (German et al., 

2010 [53]; Volkmann et al., 2017 [166]). All dogs involved were administered oral tylosin 

20 mg/kg daily for a week. Through days 8-21, the dogs were divided into three groups to 

receive either: 1) a single enema FMT 2) daily oral FMT capsules 3) daily placebo capsules. 

Faecal samples were collected at regular intervals, up until day 42 for analysis, where qPCR 

assessed the abundance of bacteria taxa and consequentially the dysbiosis index. 

Additionally, GC-MS was employed to measure the faecal concentrations of unconjugated 

bile acids (UBA). Results showed tylosin having a notable impact on the faecal microbiota 

and BA concentrations by day 7 in all dogs studied, but restoration to normal baseline values 

was rapid post tylosin was discontinued. It had been hypothesized that FMT would hasten 

recovery of the antibiotic-induced dysbiosis, but this was not the case. Therefore, further 

investigation is warranted to establish the efficiency of FMT in the treatment of antibiotic 
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related dysbiosis. As all participating dogs in the experiment were deemed healthy ahead of 

the trial, it would be of considerable interest to investigate if dogs with diagnosed unbalanced 

biomes would exhibit any influence on the outcome. 

  

A similar prospective, randomized controlled clinical trial was undertaken to evaluate over 

time, the impact of tylosin on the intestinal microbiome and UBA concentration (Manchester 

et al., 2019 [100]). The faecal microbiota was examined through daily faecal scoring and 

faecal sampling (Days 0,7,21 and 63). 16 healthy dogs were randomly assigned into a placebo 

or tylosin group, where in depth faecal microbial testing was conducted using qPCR and 16S 

rRNA sequencing and UBA were analysed via GC-MS methodology. The results indicated 

that faecal scores remained unchanged in both groups, however tylosin treated dogs exhibited 

decreased bacterial species diversity, which is a common finding in dogs with a chronic 

enteropathy (Minamoto et al., 2015 [106]; Minamoto et al., 2019 [105]). Specifically, 

anaerobic species Fusobacteriaceae and Veillonellaceae were notably decreased. 

Veillonellaceae is notable as this taxon is an essential SCFA-producing core bacteria 

(Minamoto et al., 2019 [105]), and reduced availability of SCFA equates to a lesser amount 

of the primary food source of colonocytes (Minamoto et al., 2019 [105]). Moreover, primary 

UBA concentrations in the dogs receiving tylosin were found to be increased at day 21 and 

day 63. Contrary to the previous study, recovery rates of intestinal microbes were found to 

vary after the discontinuation of tylosin, suggesting a more persisting effect. However, 

tylosin application was proven to again induce faecal dysbiosis in otherwise healthy dogs. 

This has clinical importance as it highlights the potential gut microbial and BA impact in 

dogs when treated with a tylosin antibiotic. This warrants further attention and consideration 

when applied in veterinary practice. 

  

As noted in previous discussions, ARE has undergone reclassification within the framework 

of chronic enteropathy, and now falls under the IID category. A multicentric prospective 

study performed by Bottero et al. (2022 [25]) endeavoured to elucidate the effect of tylosin 

on the gut microbiota of dogs with suspected ARE, and their overall clinical progression over 

a period of 120 days. The study encompassed 30 dogs, with group A comprising of 15 dogs 
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afflicted with chronic diarrhoea, and group B consisting of 15 dogs serving as a control. 

Initially baseline evaluation of species diversity between the 2 groups was significantly 

different, with group A exhibiting considerably reduced richness of Lactobacillaceae. After 

a period of 30 days, 9 dogs in group A experienced a relapse of diarrhoea, and a notable 

disparity in alpha-diversity was detected. The study’s overall conclusion revealed that whilst 

tylosin is known to influence the intestinal microbiota of dogs with ARE, no specific 

characteristics were detected in the microbiota of dogs belonging to group A. Hence no 

typical microbiota profile was discovered that could clinically aid in the clinical identification 

of ARE or chronic diarrhoea. These findings align with the findings of a previous study 

(Suchodolski, 2016 [150]) where no repeatable dysbiotic patterns were concluded. To 

enhance clinical understanding, additional in-depth research is required to investigate the 

precise microbial changes underlie dysbiosis and enteropathies. 

  

Pinna et al. (2020 [122]) conducted a noteworthy study on tylosin, which not only examined 

the impacted faecal microbiota, but also explored how tylosin treatment affects their 

metabolism. Contrary to aforementioned tylosin studies, this experiment adopted an atypical 

approach by employing in vitro methodologies, utilizing faecal microbiota from healthy 

dogs. They also trialled prebiotic oligosaccharides like fructooligosaccharides, 

galactooligosaccharides or xylooligosaccharides, to see if this had any counter-effect. 

Tylosin treated samples were found to have a higher pH, increased Clostridium cluster I and 

a lesser concentration of Lactobacilli. Notably, the combination of tylosin with prebiotics 

demonstrated a counteractive reaction on certain negative effects of tylosin. For instance, the 

prebiotics were shown to preserve beneficial commensal bacteria populations such as 

lactobacilli and clostridium cluster XIVa. They also showed a VFA protective effect, which 

are vital microbial fermentative end-products recognized for their significance in supporting 

enterocytes. The sample analysis method relied on qPCR analysis and did not explore as 

many specific bacterial groups as previously discussed. As a result, care must be taken when 

interpreting the results and trying to draw parallels. However, it is intriguing to note that 

prebiotics exhibited a mitigating effect on how tylosin affects microbial diversity. 
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DIETARY EFFECTS 
  

Veterinary dietary intervention is believed to exert modulatory effects on the intestinal gut 

microbiome, making it a common treatment choice in dogs afflicted with food-responsive 

chronic enteropathy (Bresciani et al., 2018). Carefully managed elimination diets can be used 

to gain vital information on CE at an individual level, which can help towards diagnosis in 

cases that respond favourably. The primary objective is to deliver complete, well-balanced 

nutrition whilst circumventing any potential reactive substances and dysbiosis resolution 

(Allenspach et al., 2007 [7]; Gaschen & Merchant, 2011 [50]; Dandrieux, 2016 [33]). The 

overarching goal is to mitigate GI mucosa irritation, sustain normal GI motility and 

ultimately ameliorate or at least diminish presenting clinical signs (Purina Institute, 2021 

[124]). Many CE sufferers respond positively to controlled nutritional therapy, negating the 

need to resort to furthermore invasive tests like biopsies and histopathological tests 

(Wernimont et al., 2020 [174]). Elimination diet trials are now frequently prescribed as a 

preliminary step to endoscopy in dogs exhibiting mild to moderate GI signs, when no other 

underlying causes are evident (Walker et al., 2014 [169]; Allenspach et al., 2016 [4]). 

  

Historically, as natural carnivores, dogs have held a preference for high protein diet 

(Macdonald & Rodgers., 1984 [97]; Clauss et al., 2010 [29]). However, contemporary 

domestic dogs mainly consume diets high in carbohydtrates as live in urban environments as 

pet companions. This dietary lifestyle exposes them to similar health challenges as human 

beings, such as obesity, metabolic diseases and cancer (Kieler et al., 2017 [80]; Bermudez 

Sanchez et al., 2020 [21]; Pilla & Suchodolski, 2021 [121]). Overall health of dogs is 

massively impacted by the composition and activity of microbiota, and this has been linked 

to the development of various diseases (Lee & Hase., 2014 [86]). Thus, gaining a more 

profound understanding of the microbiota in pets and its influencing factors, holds massive 

clinical significance in fostering canine health. 

  

The majority of microbiome research conducted on dogs has focused on investigating the 

clinical effects of extruded diets, which comprise 95% of commercially available canine diets 
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(Pilla & Suchodolski, 2021 [121]). Many different formulations exist, but largely include a 

high carbohydrate load, to limit potentially reactive animal proteins. Although still in the 

minority, there has been a recent increase in the number of owners choosing homemade, raw 

and frozen prepared diets, which tend to be more meat and protein forward. (Freeman et al., 

2013 [49]; Davies et al., 2019 [35]). More research is needed into the role these more modern 

dietary regimes have in canine dysbiosis and CE. 

  

In 2018, Bresciani et al. conducted a study that offered valuable insight into the faecal 

microbiota alterations resulting from the provision of animal-protein free diet to canine 

sufferers of CE. The findings of this study showed a marked improvement in faecal microbe 

richness in dogs with CE, following the dietary intervention, but no significant microbial 

changes. The faecal microbiota of the healthy treated dogs exhibited relatively unremarkable 

results. This research clearly demonstrates the link between dysbiosis and CE, whilst also 

positively highlighting a dietary solution. Despite the strong links shown, the 60-day trial 

was relatively small and heavily relied on the owner for sample collection, handling and 

storage. The involvement of particular breeds, home environments and even routine may 

introduce a potential bias. It would be of considerable interest to observe additional studies 

to further explore and expand upon these findings. 

  

Unlike the majority of chronic enteropathy research trials that focus on fully matured dogs, 

Vuori et al. (2023 [167]) carried out a significant cross-sectional, longitudinal 

epidemiological study on puppies, monitoring their development into adulthood. Their 

investigation aimed to elucidate the potential impact of early diet on future occurrence of 

inflammatory gastrointestinal disorders later in life. Current knowledge projects that the gut 

microenvironment and host immune system play a major role in the development of 

inflammatory intestinal disturbances, although the exact etiology of chronic enteropathy 

remains elusive (Tizard & Jones., 2018 [162]; Harris & Chang, 2018 [60]). Principal 

component analysis and logistic regression were employed to analyse data from a food 

frequency questionnaire collected from Finnish companion dogs, encompassing a total of 

16,607 answers. The study revealed that certain feeding practices during puppyhood (2-6 
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months old) and adolescence (6-18 months old) had a protective effect against developing 

chronic enteropathy in later life. Specifically, feeding a non-processed meat-based diet and 

allowing the dog occasional suitable human meal leftovers in developmental years, were 

associated with a reduced risk of developing chronic enteropathy. Notably, the inclusion of 

raw bones and cartilage and berries were also associated with a lower chronic enteropathy 

incidence. Conversely, certain feeding practices were identified as significant risk factors for 

chronic enteropathy occurrence later in life. These included feeding younger dogs an ultra-

processed, carbohydrate-based diet such as dry dog food kibble and also the inclusion of raw-

hide snacks. This study highlights the impact of diet and the potential role it plays on 

intestinal health. However, more in-depth studies, analysing the precise microbial effects and 

exact frequencies of specific dietary interventions are warranted to promote its findings. 

  

Another non-animal protein dietary trial (Kerr et al., 2013) demonstrated the impact of 

incorporating 25% navy beans (also known as haricot beans) on the canine microbiome over 

4 weeks. Similarly, to the previously discussed study, the prescribed diet had no major effect 

on the intestinal microbiome, but after 4 weeks on either the bean/control diet, an increase of 

Phylum Firmicutes was observed, along with decreased levels of Phyla Actinobacteria and 

Fusobacteria when compared to the baseline levels. Numerous studies have supported the 

beneficial effects of bean consumption in human and rat models, towards combating chronic 

inflammatory diseases (Sánchez-Tapia et al., 2020 [134]; John et al., 2023 [78]; 

Mirmohammadali & Rosenkranz, 2023 [107]). The application of more bean-involved 

dietary studies to dogs suffering from dysbiosis or chronic enteropathy would perhaps be 

valuable. 

  

A surprising link has been discovered between the intestinal microbiome and obesity (Kieler 

et al., 2017 [80]). In this prospective, non-randomized 12-week trial, 18 healthy medium-

large breed dogs were examined, and fed Royal Canin’s Satiety Support restrictive diet. This 

dry feed contains high protein, fibre and low fat levels, and was combined with a sedentary 

lifestyle as per the owner, to investigate the interplay between low exercise, weight loss and 

the gut microbiota. An additional subset of 8 dogs were enrolled in an exercise program in 
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addition to the dietary intervention. Faecal samples were collected and their weights recorded 

periodically. It was concluded that exercise did not alter total weight loss, food allowance or 

faecal microbiota composition. However, the abundance of Megamonas negatively 

correlated with weight loss rate. Dogs found to lose weight more readily exhibited a lower 

Ruminococcaceae abundance compared to those dogs with a slower weight loss. Both of 

these microbial changes, suggest that gut microbial composition favouring SCFA production, 

may hinder weight loss rates in dogs. Minamoto et al. (2019 [105]) found dogs with chronic 

enteropathy to also have decrease SCFA concentrations, and so more research into these 

microbial metabolites is warranted. 

  

Several studies have investigated the effect of meat-based raw diets on the gut microbiome 

of heathy dogs, which will not necessarily lend data to dysbiosis sufferers. However due to 

growing popularity in developed countries and its microbiome effects, it requires brief 

discussion (Dinallo et al., 2017 [40]; Davies et al., 2019 [35]). Short-term consumption of a 

diet with significant macronutrient differences, such as an omnivore to carnivore transition, 

have been proven in humans to rapidly alter gut microbiota profiles (David et al., 2014).  

Contrary to typical control diets, raw diets are characterized by high protein and low 

carbohydrate content, with limited fibre.  

  

Schmidt et al. (2018 [137]) explored the effect of feeding 27 dogs a BARF diet and 19 dogs 

a commercially prepared diet, upon the faecal microbiome. Naturally passed faecal samples 

were analysed for differences in crude protein, fat, fibre and nitrogen-free extract, and the 

faecal microbiota was analysed by both 16S rRNA gene sequencing and qPCR assays. A 

further untargeted faecal metabolome approach was applied to 10 BARF dogs and 9 

commercially-fed studied dogs. Dogs in the BARF group received a diet notably higher in 

protein and fat, whilst their intake of nitrogen-free extract and fiber was significantly lower 

than the commercially-fed group. Through linear discriminat Analysis Effect Size (LefSe), 

higher abundances of lactobacillales, Enterobacteriaceae, Fusobacterium and Clostridium 

were identified in the BARF group. Whilst commercially-fed dogs exhibited higher 

abundances of Clostridiaceae, Erysipelotrichaceae, Ruminococcaceae and Lachnospiraceae, 
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Negatively, BARF fed dogs were revealed to have notably higher amounts of E.coli and C. 

perfringens, along with an increased dysbiosis index. No disparities were observed in faecal 

BA concentrations, but the BARF group exhibited higher faecal cholesterol concentrations 

compared to the conventionally-fed dogs. The study concluded before any long-term impact 

of the differing diets could be assessed, therefore it is not known whether the changes 

deducted from these results will incur future intestinal disease. However, the study did find 

intestinal microbial changes (Suchodolski, 2012) frequently observed in GI diseases, in the 

BARF group. 

 

The incorporation of dietary fibre into canine diets has been documented as an efficacious 

regulator of the gastrointestinal microbiota (Wernimont et al., 2020 [174]; Pilla & 

Suchodolski, 2021 [121]). Resistant starch (RS), a fermentable dietary fibre, has garnered 

considerable attention, particularly within the realm of human nutritional medicine, due to 

its ability to positively influence the gastrointestinal tract and its associated microbiota. 

(Walsh et al., 2022 [170]). This influence is primarily achieved by its ability to stimulate 

heightened butyrate production from SCFA fermentation (DeMartino & Cockburn, 2020 

[36]). Mackei at al. (2022 [99]) conducted a large comparative study on 30 beagles that 

corroborates the use of fibre in dogs for this purpose. Over a 15-day trial duration, all dogs 

received the same standardized diet. On top of this, half the cohort were supplemented with 

lactulose whilst the other half received a psyllium supplement. Both lactulose and psyllium 

were shown to alter the intestinal VFA, demonstrating noteworthy increases through GC-MS 

analysis of faecal samples. However, elevated n-butyrate concentrations were only observed 

in the psyllium-fed cohort, suggesting that prebiotic application may promote further effects 

on the canine hindgut. These findings hold large significance in the context of managing 

patients with intestinal disorders and portosystemic shunts (PSS), offering perhaps a future 

therapeutic avenue. Future studies exploring psyllium and the intestinal microbiome, could 

pursue a more breed-diverse study group. This may serve as better representation for canine 

animals as a whole and help towards reducing bias. 
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Fundamentally, these varieties of starch possess the capacity to resist small intestinal 

breakdown and evade digestion, which allows for colonic fermentation by specialized 

microbiota (Li et al., 2018 [93]). This process indirectly modulates the environment of the 

colon, promoting healthy colonocytes, SCFA-producing bacteria, fermentation activity and 

the reduction of faecal pH (Birkett et al., 1996 [22]; Peixoto et al., 2017 [117]). Functioning 

as a histone deacetylase inhibitor, Butyrate has been demonstrated to operate in an epigenetic 

capacity in hindering the proliferation of cancerous colorectal cells engaged in the Warburg 

effect, and also in reducing gut inflammatory markers (Donohoe at al., 2012 [42]; Donohoe 

et al., 2014 [43]). Although RS has demonstrated exceptional efficacy in augmenting butyrate 

levels on a human population scale, it is evident that uniform benefits do not extend to every 

individual, with some participants even seemingly unresponsive to RS (Knudsen et al., 2018 

[83]). This observation underscores the significant influence exerted by an individual 

microbiome, and necessitates a more comprehensive exploration into RS and its effects. Also 

supporting the need for additional investigations, is the incredibly limited scope of research 

exploring the impact of RS on canine microbiota. Despite promising studies in rodents and 

pigs (Rodríguez-Cabezas et al., 2010 [130]; Tan et al., 2021 [159]), canine application seems 

to be in short supply, perhaps related to canine intestinal anatomical differences. 

  

Beloshapka et al. (2021 [18]) investigated the clinical impact of adding varying levels of 

resistant starch to the diet of healthy dogs, using an incomplete latin-square study design and 

five randomly assigned 21-day experimental periods. Each dog acted as its own control, as 

faecal samples were only collected after day 18, to allow for a dietary adjustment period. 

This study aimed to systematically examine the total tract macronutrient digestibility, 

fermentative end-product production and composition of faecal microbial populations of 7 

dogs, after being fed increasing concentrations of fermentable resistant corn starch. Statistical 

analysis involved assessing linear and quadratic effects using a Statistical Analysis System. 

The experiment revealed that an increased RS consumption led to linear reductions (P < 0.05) 

in digestibility across the board and in faecal pH. Additionally, faecal output, Lactobacillus, 

Prevotella, Blautia and Faecalibacterium spp. exhibited linear increase (P < 0.05). The 

statistical changes in microbiota were minimal, but the slight shift infers potential importance 
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of further exploration in dogs with much larger sample sizes. Beloshapka et al. (2021 [18]) 

proposed a potential link between amplified microbial activity and augmented faecal nitrogen 

excretion in healthy dogs, however further application of such resistant starch supplements 

in clinical population studies may be insightful. 

 
PROBIOTICS 
  

The International Scientific Association for Probiotics and Prebiotics have termed probiotics 

as “live microorganisms which when administered in adequate amounts confer a health 

benefit to the host” (Hill et al., 2014 [63]). The ISAPP non-profit organization was 

established in 2002 to champion the flow of accurate scientific information regarding 

probiotics and their use. Numerous instances of mislabelling and misbranding have been 

documented commercially (Weese, 2002 [171]; Weese & Martin, 2011 [172]; de Simone, 

2019 [37]) which the ISAPP aims to clarify this in Fig.7. by separating probiotics into classes 

and defining clearly the scope and appropriate use. Largely lactic acid bacteria (LAB) are 

applied in animals as their numbers tend to be lower in chronic enteropathy sufferers, but 

probiotic therapy is also commonly utilized in human medicine (Sarowska et al., 2013 [135]; 

Rallis et al., 2016 [126]). Other important canine strains include: Bifidobacterium, 

Enterococcus faecium and Saccharomyces boulardii yeast (Dandrieux & Mansfield, 2019 

[34]). Different classes of probiotics exert their effect through various mechanisms: nutrient 

competition, antibacterial effect and pathogen adhesion (Sarowska et al., 2013 [135]). By 

fostering the growth of beneficial bacteria within the GI tract, probiotics facillitate the 

restoration of balanced intestinal microbiota, thereby enhancing digestive function. They also 

lend prospective advantage by positively modulating the immune system, mitigating 

systemic stress and susceptibility to infection. Additionally, probiotics are thought to play a 

role in managing allergies, enhancing growth and development and even obesity 

management (Abenavoli et al., 2019 [1]). 

  

Research examining probiotic use in dogs with CE or other forms of intestinal dysbiosis tend 

to be bench-top or clinical trials, where different probiotics treat different breeds, suffering 
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from various intestinal issues. Therefore, drawing any definitive conclusions from such 

studies or making parallels is incredibly difficult. 
 

Fig 7. ISAPP Probiotic framework (Hill et al., 2014 [63]) 

 
 

  

Sauter et al. (2006 [136]) conducted an interested albeit multifaceted study on 21 client-

owned dogs with FRE, assessing the potential beneficial effects of probiotic supplementation 

on intestinal cytokine patterns and intestinal microbiota. During endoscopy, intestinal tissue 

samples and faecal specimens were collected and trialled against a probiotic placebo. 

Through mRNA technique the abundance of interleukins, TNF-α, TGF-ß1 and IFN-γ were 

analysed, and lactobaccilus spp., bifidobacterium spp., enterococcus spp., enterobacteriaceae 

quantified. The probiotics supplemented were evaluated through intestinal faecal sampling. 

All dogs supplemented with probiotics in this double-blinded study showed a significant 

reduction in CIBDAI with lactobacillus spp. numbers increasing during the treatment phase. 

Post probiotic treatment, over 60% of the dogs had at least one probiotic strain identified in 

their flora, suggesting probiotics had a persisting effect. Even the placebo group received an 

elimination dietary intervention and clinically improved, so it cannot be stated that probiotic 

prescription alone had significant effect. To understand the full benefit of probiotic treatment, 

more standardized stand alone trials are warranted. 
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In cases of IBD, dogs are sometimes prescribed probiotics, in conjunction with standard 

immunosuppressive therapy. White et al. (2017 [176]) conducted a randomized study where 

dogs diagnosed with IBD received either standard therapy alone, or in combination with 

probiotic supplementation. Both treatment regimens demonstrated comparable modulation 

of the number of mucosal bacteria found in the dogs, leading to increased bacterial numbers 

found in the adherent mucosal layer. Additionally, both treatments were associated with a 

swift clinical recovery, even though no physical reduction of histopathological inflammation 

was identified. Curiously, It was of particular interest that only the group receiving the 

supplemented probiotics, were found to exhibit enhanced expression of tight junction 

proteins. This implies that despite lacking colonization, probiotics may positively exert an 

effect on mucosal homeostasis. 

  

In another study by Rossi et al (2014 [132]) dogs afflicted with IBD, a multi-strain probiotic 

exhibited successful results as an alternative to the combination therapeutic protocol of 

prednisolone and metronidazole. Demonstrated in the study was the utilization of a combined 

therapy administered over a span of 60 days, succeeded by a 30-day interval dedicated to the 

elimination of residual effects. Both treatment groups experienced a significant decrease in 

clinical assessment scores over time, although the treatment group receiving probiotics 

showed a slower remission of clinical signs. However, upon evaluating specific bacterial taxa 

within the gut microbiome via qPCR, only the probiotic group was found to have an increase 

in the abundance of Faecalibacterium spp., a strain not included in the probiotic mix applied. 

This is an important butyrate-producing strain, a SCFA that is undisputed in maintaining 

intestinal health (Rivera-Chavez et al., 2016 [128]). This study interestingly, did not show 

metronidazole to significantly alter bacterial proportions of Bacteriodetes, Firmicutes, 

Fusobacteria, Bifidobacterium, Lactobacillus, Faecalibacterium, Escherichia coli and 

Clostridia perfringens. This potentially could be attributed to variables such as the health 

status of the sampled dogs, the implementation of a wash-out period and dissimilarities in 

methodologies employed. 
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An alternative perspective delves into the infective origins of canine intestinal dysbiosis, as 

recent research has drawn conclusions regarding the correlation between parvovirus and 

substantial disruption to the composition of the intestinal microbiota (Park et al., 2019 [115]). 

Comparative analysis in this study, revealed a notable disruption in alpha diversity, as well 

as decreased richness of species. In conjunction with this, Arslan et al. (2012 [13]) performed 

a study that aimed to assess the potential benefit of using probiotic therapy in comparison to 

standard supportive therapy alone. This study encompassed a cohort of 20 mixed-breed 

puppies aged between 1-6 months. All involved puppies were identified as ‘naturally 

infected’ based on presenting clinical manifestations of enteritis and a definitive positive 

result from a commercially available ELISA test. These puppies were evenly divided into 

two equivalent groups, with both groups receiving supportive symptomatic treatment. 

However, group 1 also received a multi-strain oral probiotic supplement. Over the course of 

the trial, it was observed that seven dogs in group 1 (70%) and nine dogs in group 2 (90%) 

successfully survived the infection. Furthermore, puppies in group 2 exhibited a notably 

expedited recovery in terms of clinical scores, when compared to their counterparts in group 

1, who did not receive any probiotic treatment. Analysis of blood parameters also proved 

probiotic-supplemented puppies to demonstrate significant improvement in leukocyte and 

lymphocyte counts during the treatment period. These findings suggest that the 

administration of probiotics may yield benefits in the treatment of canine parvovirus, 

potentially reducing the duration of recovery and even mitigating the associated mortality 

rate linked to this infection. Conducting more research to substantiate any relationship 

between canine parvovirus and intestinal dysbiosis would hold clinical significance, and 

potentially facilitate more efficacious treatment approaches in the future.  
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DISCUSSION  
 

This literature review has aimed to offer a comprehensive and thorough overview of the 

current research pertaining to the use of metronidazole, tylosin, dietary intervention and 

probiotics in the management of intestinal dysbiosis and related conditions in dogs. Current 

studies have examined these methods as stand-alone therapy treatments but also highlighted 

the complex interplay of a poly-treatment approach on the gut microbiome and clinical 

outcomes. Whilst these furnished valuable insights into potential benefits and associated 

intricacies, it has also emphasized the need for more rigorous and standardized trials to fully 

explore the effects of such prescriptions. 

  

Many studies have explored the repercussions of metronidazole on the microbiome and its 

bearing on therapeutic outcomes in dogs. The study by Pilla et al. (2020 [118]) delved into 

the ramifications of a 14-day metronidazole regimen. The outcomes unveiled not only a 

decline in microbial diversity but corroborated the plausibility of prolonged metronidazole 

impact on the microbiome. In contrast, the preceding study of healthy dogs by Igarashi et al. 

(2014 [70]) eluded that the influence of metronidazole on the gut microbiota is merely 

transitory. This discrepancy in findings, underscores the imperative for further investigation 

aimed at comprehensively exploring the clinical and microbial ramifications of 

metronidazole therapy. 

  

An additional inquiry conducted by Rudinsky et al. (2022 [133]) pursued an examination of 

metronidazole therapy in dogs afflicted with non-infectious acute colitis. The study 

uncovered that metronidazole engendered an adverse effect on the DI but interestingly 

extended the remission duration of the treated dogs. This amplifies the intricate dimensions 

of the influence, metronidazole holds on gut health, and potentially rationalizes why it was 

such a commonly prescribed medication for gastrointestinal ailments in the past. Despite this 

promising finding, navigating the potential downfalls of the therapy is vital, especially in 

dogs already suffering some form of dysbiosis. Hence, a more extensive understanding of 

metronidazole and the exact biological reactions it incurs is warranted. 
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While discernible shifts in the intestinal microbiome consequent to metronidazole have 

surfaced, the precise timeline, implication and affected bacterial species are yet to be 

definitively studied. Many studies discussed during the course of this paper, concluded 

slightly differing results. The investigations spotlighted in the discourse, emphasize the the 

need for more extensive, longitudinal research to better understand the potential effects of 

metronidazole therapy. Variation in approach to this issue, could explain why research has 

drawn such wide, assorted conclusions.  

  

Marclay et al. (2022) conducted a controlled study exploring the impact of tylosin therapy 

on the recovery of the faecal microbiome of healthy dogs. Despite being employed to treat 

digestive disorders and intestinal dysbiosis, the potential of tylosin to induce gut dysbiosis 

and disrupt BA bio-transformative reactions is recognized This study found tylosin to have 

a rapid impact on the faecal microbiota and BA concentrations by day 7, although restoration 

to baseline values occurred swiftly after discontinuation. The effects of tylosin therapy were 

deemed temporary, but as the study focused on microbiota modulations in healthy dogs, 

investigating its influence on dogs with existing biome imbalances could yield some further 

valuable insight. Interestingly, Manchester et al. (2019 [100]) also conducted research on the 

impact of tylosin on healthy dogs, and found opposing conclusions, that implied more 

persistent effects of tylosin therapy. Bottero et al. (2022 [25]) conversely examined the effect 

of tylosin on dogs suffering with chronic enteropathy and demonstrated notable variations in 

alpha microbial diversity in 30 days. Hence similar to the earlier statements made regarding 

the metronidazole research discussed, more comprehensive examination of this antibacterial 

drug is also required. 

  

A completely unique approach was applied by Pinna et al. (2020 [122]) who investigated the 

effects of tylosin on faecal microbiota and metabolism through in vitro methods. Tylosin 

treated samples were found to be of higher pH, increased Clostridium cluster I and decreased 

Lactobacilli. Prebiotics were also shown to mitigate some of the adverse effects of tylosin, 

preserve beneficial bacterial populations and support the production of fermentative end-

products. Although this study utilized a different analysis method and did not explore specific 
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bacterial groups extensively, the interaction between tylosin was valuable and the effect of 

the prebiotic intriguing. In summary these antibacterial studies collectively contribute to the 

understanding of the intricate impact tylosin exerts on canine gastrointestinal health. They 

highlight the potential for intestinal dysbiosis, microbial alteration and bile acid disruption 

induced by tylosin therapy administration. The diverse findings underscore the complexity 

of effects and possible interactions with various treatments, necessitating further research to 

decipher the precise implications of their use as safe future therapies. 

  

When investigating the importance of dietary influence on gut microbiota and disease in 

dogs, the impact of various dietary modulations highlighted the positive role nutrition plays 

in managing gastrointestinal health. Many dietary treatment avenues were discussed in this 

paper, providing insight not only into effects on the microbiota, but also other canine 

afflictions such as chronic enteropathy and even obesity (Kieler et al., 2017 [80]; Vuori et 

al., 2023 [167]).  

  

Strategically devised elimination diets continue to serve as a pivotal diagnostic tool at the 

individual level, however this paper discussed various other dietary approaches such as non-

animal protein, BARF and resistant starch (Kerr et al., 2013; Schmidt et al., 2018 [137]; 

Beloshapka et al., 2021 [18]). Each of these studies offered a valuable perspective on the 

potential impacts of specific prescribed diets on faecal microbiota. Nevertheless, the absence 

of significant findings underscores the necessity for further research into this domain. 

  

In particular, the work Vuori et al. (2023 [167]) demonstrated the link between early dietary 

choices and the development of chronic enteropathy later in life, proving the long-term 

implications of diet on canine gut health. This highlights the pivotal role veterinary 

professionals hold in comprehending early dietary selections and their potential future health 

implications. More research into the maturation of the canine microbiome and the microbial 

consequences of early dietary choices are warranted, to empower the veterinary profession 

in providing informed counsel to puppy owners.  
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The incorporation of dietary fibre into canine diets has been proven to promote healthy 

gastrointestinal microbiota (Wernimont et al., 2020 [174]; Pilla & Suchodolski, 2021 [121]; 

Mackei et al., 2022 [99]). Mackei et al. (2022 [99]) conducted an extensive study into the 

application of dietary fibre in beagles. Through gas-spectrum chromatography (GC-MS) 

analysis, psyllium was was observed to an increase in intestinal volatile fatty acid (VFA) 

content within collected faecal samples. Dogs recieving psyllium supplementation 

demonstrated notably higher concentrations of n-butyrate, indicating the potential benefits 

this prebiotic exerts on hindgut fermentation. While broader research involving a more 

diverse range of dog breeds would enhance the robustness of these findings, this study holds 

significant promise for the treatment of various intestinal disorders. 

 

A fermentable dietary fibre of particular note, Resistant Starch (RS) has shown promise in 

human trials (Walsh et al., 2022 [170]), however current canine research supporting any 

positive effect is limited. Beloshapka et al. (2021 [18]) found increasing RS intake in a 

healthy dog population to reduce digestibility and faecal pH. The study also revealed minor 

increases in faecal microbial populations and output, indicating that RS may indeed influence 

the canine intestinal microbiota. This underscores the importance of additional research into 

RS supplementation in for dogs. To delve deeper into potential associations, more extensive 

trials involving RS application in dogs are necessary. These trials should involve larger study 

cohorts and potentially include dogs with more disrupted microbiomes, to provide valuable 

insight. 

 

However, elevated n-butyrate concentrations were only observed in the psyllium-fed cohort, 

suggesting that prebiotic application may promote further effects on the canine hindgut. 

These findings hold large significance in the context of managing patients with intestinal 

disorders and portosystemic shunts (PSS), offering perhaps a future therapeutic avenue. 

Future studies exploring psyllium and the intestinal microbiome, could pursue a more breed-

diverse study group. This may serve as better representation for canine animals as a whole 

and help towards reducing bias. 
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Probiotics have emerged as a very promising therapy avenue for managing GI dysbiosis in 

dogs, as indicated by studies eliciting potential benefits in not only modulating the gut 

microbiota, but also in facilitating clinical recovery. However, the intricate, multifaceted 

nature of the gut microbiota, coupled with the variability of available probiotic strains, make 

it essential to conduct further research to ascertain optimal strains, clinical dosages and 

appropriate treatment durations. The studies discussed contribute valuable insights into the 

potential advantages of probiotic supplementation in the context of canine gastrointestinal 

health, both in non-infectious and infectious cases. All discussed probiotic studies were 

united in demonstrating that probiotic treatment was associated with a reduction of presenting 

clinical scores 

  

In regards dogs afflicted with enteropathy disease (Sauter et al., 2006 [136]; Rossi et al., 2014 

[132]) where a link to intestinal dysbiosis is well-established, probiotics were found to lead 

to an increased abundance of specific intestinal bacteria. Particularly of note, Rossi et al. 

(2014 [132]) where probiotic supplementation was observed to increase the presence of 

beneficial butyrate-producing strain of bacteria in the gut. This implies a potential advantage 

of probiotics in enhancing the bacterial composition of the gut microbiome, and therefore 

highlighting their potential merit in treating intestinal dysbiosis. 

  

White et al. (2017 [176]) further expanded on the benefits of probiotics with their randomized 

study, revealing that only the probiotic-supplemented group displayed enhanced expression 

of tight junction proteins in the gut. This indicates a potential physically positive impact of 

probiotic use on gastrointestinal mucosal homeostasis. 

  

While microbiome research focusing on the infective causes of canine dysbiosis appears to 

be less abundant, it should not be disregarded. Arslan et al. (2012 [13]) underscored the 

importance of considering intestinal dysbiosis, by demonstrating probiotic therapy to reduce 

recovery time and mortality rate in puppies suffering with canine parvovirus. While the study 

in question may be considered outdated, it is evident that the potential advantages of probiotic 

utilization may be very clinically valuable, and therefore warrant contemporary investigation 
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and consideration. Probiotics have been shown to hold significant potential as a valuable 

adjunctive therapy for a range of gastrointestinal canine conditions and so hold massive 

potential merit. 

  

In summation, better comprehension of therapeutic modalities applicable to GI dysbiosis and 

in turn chronic enteropathy are necessary through more cohesive research. Present 

understanding is constrained and lacks the requisite standardization that is essential for 

deducting correlations and parallels. As modulations in the intestinal microbiome have been 

firmly established as being interconnected with general systemic health, acquiring additional 

knowledge is of paramount importance to enhance the efficiency of applied clinical 

interventions in veterinary medicine. 
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