• English
    • magyar
  • magyar 
    • English
    • magyar
  • Belépés
Dokumentum megnyitása 
  •   HuVetA kezdőlap
  • Publications
  • National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety
  • Dokumentum megnyitása
  •   HuVetA kezdőlap
  • Publications
  • National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety
  • Dokumentum megnyitása
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tissue Tropism of H9N2 Low-Pathogenic Avian Influenza Virus in Broiler Chickens by Immunohistochemistry

Thumbnail
Megtekintés/Megnyitás
animals-13-01052.pdf (2.790Mb)
Dátum
2023
Szerző
Bóna, Márta
Kiss, István
Dénes, Lilla
Szilasi, Anna
Mándoki, Míra
DOI link
10.3390/ani13061052
Metaadat
Részletes rekord
Absztrakt
The H9N2 subtype of low-pathogenic avian influenza viruses (LPAIV) is a widespread pathogen of poultry that can also infect humans. The characterization of viral infections is a complex process, involving clinical, pathological, and virological investigations. The aim of this study was to adapt and optimize an immunohistochemical (IHC) technique developed for LPAIVs specifically for the detection of H9N2 virus antigens in infected tissues. Twenty-one-day-old broiler chickens were inoculated with three different strains of H9N2 virus by different infection routes (i.e., intranasal-intratracheal and intravenous) or co-infected with infectious bronchitis virus (IBV) and observed for 11 days post infection. The suggested IHC protocol was modified: (i) DAB (diamino-benzidine) was substituted with AEC (3-amino-9-ethyl carbazole) as chromogen; and (ii) indirect two-step immune reactions of monoclonal primary and peroxidase-labeled anti-mouse secondary antibodies were used instead of avidin–biotin complexes. Avian influenza virus antigen appears as a red precipitate in the nuclei of affected cells but can also be identified in the cytoplasm. Mild hyperemia and congestion were observed in the trachea, air sac, and lungs of the challenged birds, and fibrinous exudate was found at the bifurcation in a few cases. Neither gross pathological nor IHC lesions were found in the control group. Using the optimized protocol and an associated scoring scheme, it was demonstrated that the H9N2 strains tested exhibited respiratory and urinary tract tropism irrespective of the route of inoculation. On day 5, viral antigen was detected in the respiratory tract and kidney in 30–50% of the samples. On day 11, no IHC signal was observed, indicating the lack of viral replication. Slight differences in viral antigen expression were found between the different H9N2 virus strains, but, in contrast to highly pathogenic avian influenza (HPAI), no viral antigen was detected in the brain and pancreas. Thus, IHC can be considered as an informative, visual addition to the toolkit for the characterization of H9N2 LPAIV infections.
URI
http://hdl.handle.net/10832/4081
Gyűjtemények
  • National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety

DSpace software copyright © 2002-2016  DuraSpace
Kapcsolat | Küldje el véleményét
Theme by 
Atmire NV
 

 

Böngészés

A teljes HuVetÁ-banKategóriák és gyűjteményekA megjelenés éve szerintSzerzőkCímekTárgyszavakEbben a gyűjteménybenA megjelenés éve szerintSzerzőkCímekTárgyszavak

Az én HuVetÁm

Belépés

DSpace software copyright © 2002-2016  DuraSpace
Kapcsolat | Küldje el véleményét
Theme by 
Atmire NV